| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177 | /** * @license * Copyright The Closure Library Authors. * SPDX-License-Identifier: Apache-2.0 *//** * @fileoverview Implements 3x3 matrices and their related functions which are * compatible with WebGL. The API is structured to avoid unnecessary memory * allocations.  The last parameter will typically be the output vector and * an object can be both an input and output parameter to all methods except * where noted. Matrix operations follow the mathematical form when multiplying * vectors as follows: resultVec = matrix * vec. * * The matrices are stored in column-major order. */goog.provide('goog.vec.Mat3');goog.require('goog.vec');/** @typedef {!goog.vec.Float32} */ goog.vec.Mat3.Float32;/** @typedef {!goog.vec.Float64} */ goog.vec.Mat3.Float64;/** @typedef {!goog.vec.Number} */ goog.vec.Mat3.Number;/** @typedef {!goog.vec.AnyType} */ goog.vec.Mat3.AnyType;// The following two types are deprecated - use the above types instead./** @typedef {!Float32Array} */ goog.vec.Mat3.Type;/** @typedef {!goog.vec.ArrayType} */ goog.vec.Mat3.Mat3Like;/** * Creates the array representation of a 3x3 matrix of Float32. * The use of the array directly instead of a class reduces overhead. * The returned matrix is cleared to all zeros. * * @return {!goog.vec.Mat3.Float32} The new matrix. */goog.vec.Mat3.createFloat32 = function() {  return new Float32Array(9);};/** * Creates the array representation of a 3x3 matrix of Float64. * The returned matrix is cleared to all zeros. * * @return {!goog.vec.Mat3.Float64} The new matrix. */goog.vec.Mat3.createFloat64 = function() {  return new Float64Array(9);};/** * Creates the array representation of a 3x3 matrix of Number. * The returned matrix is cleared to all zeros. * * @return {!goog.vec.Mat3.Number} The new matrix. */goog.vec.Mat3.createNumber = function() {  var a = new Array(9);  goog.vec.Mat3.setFromValues(a, 0, 0, 0, 0, 0, 0, 0, 0, 0);  return a;};/** * Creates the array representation of a 3x3 matrix of Float32. * The returned matrix is cleared to all zeros. * * @deprecated Use createFloat32. * @return {!goog.vec.Mat3.Type} The new matrix. */goog.vec.Mat3.create = function() {  return goog.vec.Mat3.createFloat32();};/** * Creates a 3x3 identity matrix of Float32. * * @return {!goog.vec.Mat3.Float32} The new 9 element array. */goog.vec.Mat3.createFloat32Identity = function() {  var mat = goog.vec.Mat3.createFloat32();  mat[0] = mat[4] = mat[8] = 1;  return mat;};/** * Creates a 3x3 identity matrix of Float64. * * @return {!goog.vec.Mat3.Float64} The new 9 element array. */goog.vec.Mat3.createFloat64Identity = function() {  var mat = goog.vec.Mat3.createFloat64();  mat[0] = mat[4] = mat[8] = 1;  return mat;};/** * Creates a 3x3 identity matrix of Number. * The returned matrix is cleared to all zeros. * * @return {!goog.vec.Mat3.Number} The new 9 element array. */goog.vec.Mat3.createNumberIdentity = function() {  var a = new Array(9);  goog.vec.Mat3.setFromValues(a, 1, 0, 0, 0, 1, 0, 0, 0, 1);  return a;};/** * Creates the array representation of a 3x3 matrix of Float32. * The returned matrix is cleared to all zeros. * * @deprecated Use createFloat32Identity. * @return {!goog.vec.Mat3.Type} The new 9 element array. */goog.vec.Mat3.createIdentity = function() {  return goog.vec.Mat3.createFloat32Identity();};/** * Creates a 3x3 matrix of Float32 initialized from the given array. * * @param {goog.vec.Mat3.AnyType} matrix The array containing the *     matrix values in column major order. * @return {!goog.vec.Mat3.Float32} The new, nine element array. */goog.vec.Mat3.createFloat32FromArray = function(matrix) {  var newMatrix = goog.vec.Mat3.createFloat32();  goog.vec.Mat3.setFromArray(newMatrix, matrix);  return newMatrix;};/** * Creates a 3x3 matrix of Float32 initialized from the given values. * * @param {number} v00 The values at (0, 0). * @param {number} v10 The values at (1, 0). * @param {number} v20 The values at (2, 0). * @param {number} v01 The values at (0, 1). * @param {number} v11 The values at (1, 1). * @param {number} v21 The values at (2, 1). * @param {number} v02 The values at (0, 2). * @param {number} v12 The values at (1, 2). * @param {number} v22 The values at (2, 2). * @return {!goog.vec.Mat3.Float32} The new, nine element array. */goog.vec.Mat3.createFloat32FromValues = function(    v00, v10, v20, v01, v11, v21, v02, v12, v22) {  var newMatrix = goog.vec.Mat3.createFloat32();  goog.vec.Mat3.setFromValues(      newMatrix, v00, v10, v20, v01, v11, v21, v02, v12, v22);  return newMatrix;};/** * Creates a clone of a 3x3 matrix of Float32. * * @param {goog.vec.Mat3.Float32} matrix The source 3x3 matrix. * @return {!goog.vec.Mat3.Float32} The new 3x3 element matrix. */goog.vec.Mat3.cloneFloat32 = goog.vec.Mat3.createFloat32FromArray;/** * Creates a 3x3 matrix of Float64 initialized from the given array. * * @param {goog.vec.Mat3.AnyType} matrix The array containing the *     matrix values in column major order. * @return {!goog.vec.Mat3.Float64} The new, nine element array. */goog.vec.Mat3.createFloat64FromArray = function(matrix) {  var newMatrix = goog.vec.Mat3.createFloat64();  goog.vec.Mat3.setFromArray(newMatrix, matrix);  return newMatrix;};/** * Creates a 3x3 matrix of Float64 initialized from the given values. * * @param {number} v00 The values at (0, 0). * @param {number} v10 The values at (1, 0). * @param {number} v20 The values at (2, 0). * @param {number} v01 The values at (0, 1). * @param {number} v11 The values at (1, 1). * @param {number} v21 The values at (2, 1). * @param {number} v02 The values at (0, 2). * @param {number} v12 The values at (1, 2). * @param {number} v22 The values at (2, 2). * @return {!goog.vec.Mat3.Float64} The new, nine element array. */goog.vec.Mat3.createFloat64FromValues = function(    v00, v10, v20, v01, v11, v21, v02, v12, v22) {  var newMatrix = goog.vec.Mat3.createFloat64();  goog.vec.Mat3.setFromValues(      newMatrix, v00, v10, v20, v01, v11, v21, v02, v12, v22);  return newMatrix;};/** * Creates a clone of a 3x3 matrix of Float64. * * @param {goog.vec.Mat3.Float64} matrix The source 3x3 matrix. * @return {!goog.vec.Mat3.Float64} The new 3x3 element matrix. */goog.vec.Mat3.cloneFloat64 = goog.vec.Mat3.createFloat64FromArray;/** * Creates a 3x3 matrix of Float32 initialized from the given array. * * @deprecated Use createFloat32FromArray. * @param {goog.vec.Mat3.Mat3Like} matrix The array containing the *     matrix values in column major order. * @return {!goog.vec.Mat3.Type} The new, nine element array. */goog.vec.Mat3.createFromArray = function(matrix) {  var newMatrix = goog.vec.Mat3.createFloat32();  goog.vec.Mat3.setFromArray(newMatrix, matrix);  return newMatrix;};/** * Creates a 3x3 matrix of Float32 initialized from the given values. * * @deprecated Use createFloat32FromValues. * @param {number} v00 The values at (0, 0). * @param {number} v10 The values at (1, 0). * @param {number} v20 The values at (2, 0). * @param {number} v01 The values at (0, 1). * @param {number} v11 The values at (1, 1). * @param {number} v21 The values at (2, 1). * @param {number} v02 The values at (0, 2). * @param {number} v12 The values at (1, 2). * @param {number} v22 The values at (2, 2). * @return {!goog.vec.Mat3.Type} The new, nine element array. */goog.vec.Mat3.createFromValues = function(    v00, v10, v20, v01, v11, v21, v02, v12, v22) {  var newMatrix = goog.vec.Mat3.create();  goog.vec.Mat3.setFromValues(      newMatrix, v00, v10, v20, v01, v11, v21, v02, v12, v22);  return newMatrix;};/** * Creates a clone of a 3x3 matrix of Float32. * * @deprecated Use cloneFloat32. * @param {goog.vec.Mat3.Mat3Like} matrix The source 3x3 matrix. * @return {!goog.vec.Mat3.Type} The new 3x3 element matrix. */goog.vec.Mat3.clone = goog.vec.Mat3.createFromArray;/** * Retrieves the element at the requested row and column. * * @param {goog.vec.Mat3.AnyType} mat The matrix containing the value to *     retrieve. * @param {number} row The row index. * @param {number} column The column index. * @return {number} The element value at the requested row, column indices. */goog.vec.Mat3.getElement = function(mat, row, column) {  return mat[row + column * 3];};/** * Sets the element at the requested row and column. * * @param {goog.vec.Mat3.AnyType} mat The matrix containing the value to *     retrieve. * @param {number} row The row index. * @param {number} column The column index. * @param {number} value The value to set at the requested row, column. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setElement = function(mat, row, column, value) {  mat[row + column * 3] = value;  return mat;};/** * Initializes the matrix from the set of values. Note the values supplied are * in column major order. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the *     values. * @param {number} v00 The values at (0, 0). * @param {number} v10 The values at (1, 0). * @param {number} v20 The values at (2, 0). * @param {number} v01 The values at (0, 1). * @param {number} v11 The values at (1, 1). * @param {number} v21 The values at (2, 1). * @param {number} v02 The values at (0, 2). * @param {number} v12 The values at (1, 2). * @param {number} v22 The values at (2, 2). * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setFromValues = function(    mat, v00, v10, v20, v01, v11, v21, v02, v12, v22) {  mat[0] = v00;  mat[1] = v10;  mat[2] = v20;  mat[3] = v01;  mat[4] = v11;  mat[5] = v21;  mat[6] = v02;  mat[7] = v12;  mat[8] = v22;  return mat;};/** * Sets the matrix from the array of values stored in column major order. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {goog.vec.Mat3.AnyType} values The column major ordered *     array of values to store in the matrix. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setFromArray = function(mat, values) {  mat[0] = values[0];  mat[1] = values[1];  mat[2] = values[2];  mat[3] = values[3];  mat[4] = values[4];  mat[5] = values[5];  mat[6] = values[6];  mat[7] = values[7];  mat[8] = values[8];  return mat;};/** * Sets the matrix from the array of values stored in row major order. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {goog.vec.Mat3.AnyType} values The row major ordered array *     of values to store in the matrix. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setFromRowMajorArray = function(mat, values) {  mat[0] = values[0];  mat[1] = values[3];  mat[2] = values[6];  mat[3] = values[1];  mat[4] = values[4];  mat[5] = values[7];  mat[6] = values[2];  mat[7] = values[5];  mat[8] = values[8];  return mat;};/** * Sets the diagonal values of the matrix from the given values. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {number} v00 The values for (0, 0). * @param {number} v11 The values for (1, 1). * @param {number} v22 The values for (2, 2). * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setDiagonalValues = function(mat, v00, v11, v22) {  mat[0] = v00;  mat[4] = v11;  mat[8] = v22;  return mat;};/** * Sets the diagonal values of the matrix from the given vector. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {goog.vec.Vec3.AnyType} vec The vector containing the values. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setDiagonal = function(mat, vec) {  mat[0] = vec[0];  mat[4] = vec[1];  mat[8] = vec[2];  return mat;};/** * Sets the specified column with the supplied values. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {number} column The column index to set the values on. * @param {number} v0 The value for row 0. * @param {number} v1 The value for row 1. * @param {number} v2 The value for row 2. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setColumnValues = function(mat, column, v0, v1, v2) {  var i = column * 3;  mat[i] = v0;  mat[i + 1] = v1;  mat[i + 2] = v2;  return mat;};/** * Sets the specified column with the value from the supplied array. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {number} column The column index to set the values on. * @param {goog.vec.Vec3.AnyType} vec The vector elements for the column. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setColumn = function(mat, column, vec) {  var i = column * 3;  mat[i] = vec[0];  mat[i + 1] = vec[1];  mat[i + 2] = vec[2];  return mat;};/** * Retrieves the specified column from the matrix into the given vector * array. * * @param {goog.vec.Mat3.AnyType} mat The matrix supplying the values. * @param {number} column The column to get the values from. * @param {goog.vec.Vec3.AnyType} vec The vector elements to receive the *     column. * @return {goog.vec.Vec3.AnyType} return vec so that operations can be *     chained together. */goog.vec.Mat3.getColumn = function(mat, column, vec) {  var i = column * 3;  vec[0] = mat[i];  vec[1] = mat[i + 1];  vec[2] = mat[i + 2];  return vec;};/** * Sets the columns of the matrix from the set of vector elements. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {goog.vec.Vec3.AnyType} vec0 The values for column 0. * @param {goog.vec.Vec3.AnyType} vec1 The values for column 1. * @param {goog.vec.Vec3.AnyType} vec2 The values for column 2. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setColumns = function(mat, vec0, vec1, vec2) {  goog.vec.Mat3.setColumn(mat, 0, vec0);  goog.vec.Mat3.setColumn(mat, 1, vec1);  goog.vec.Mat3.setColumn(mat, 2, vec2);  return mat;};/** * Retrieves the column values from the given matrix into the given vector * elements. * * @param {goog.vec.Mat3.AnyType} mat The matrix supplying the columns. * @param {goog.vec.Vec3.AnyType} vec0 The vector to receive column 0. * @param {goog.vec.Vec3.AnyType} vec1 The vector to receive column 1. * @param {goog.vec.Vec3.AnyType} vec2 The vector to receive column 2. */goog.vec.Mat3.getColumns = function(mat, vec0, vec1, vec2) {  goog.vec.Mat3.getColumn(mat, 0, vec0);  goog.vec.Mat3.getColumn(mat, 1, vec1);  goog.vec.Mat3.getColumn(mat, 2, vec2);};/** * Sets the row values from the supplied values. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {number} row The index of the row to receive the values. * @param {number} v0 The value for column 0. * @param {number} v1 The value for column 1. * @param {number} v2 The value for column 2. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setRowValues = function(mat, row, v0, v1, v2) {  mat[row] = v0;  mat[row + 3] = v1;  mat[row + 6] = v2;  return mat;};/** * Sets the row values from the supplied vector. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the row values. * @param {number} row The index of the row. * @param {goog.vec.Vec3.AnyType} vec The vector containing the values. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setRow = function(mat, row, vec) {  mat[row] = vec[0];  mat[row + 3] = vec[1];  mat[row + 6] = vec[2];  return mat;};/** * Retrieves the row values into the given vector. * * @param {goog.vec.Mat3.AnyType} mat The matrix supplying the values. * @param {number} row The index of the row supplying the values. * @param {goog.vec.Vec3.AnyType} vec The vector to receive the row. * @return {goog.vec.Vec3.AnyType} return vec so that operations can be *     chained together. */goog.vec.Mat3.getRow = function(mat, row, vec) {  vec[0] = mat[row];  vec[1] = mat[row + 3];  vec[2] = mat[row + 6];  return vec;};/** * Sets the rows of the matrix from the supplied vectors. * * @param {goog.vec.Mat3.AnyType} mat The matrix to receive the values. * @param {goog.vec.Vec3.AnyType} vec0 The values for row 0. * @param {goog.vec.Vec3.AnyType} vec1 The values for row 1. * @param {goog.vec.Vec3.AnyType} vec2 The values for row 2. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained together. */goog.vec.Mat3.setRows = function(mat, vec0, vec1, vec2) {  goog.vec.Mat3.setRow(mat, 0, vec0);  goog.vec.Mat3.setRow(mat, 1, vec1);  goog.vec.Mat3.setRow(mat, 2, vec2);  return mat;};/** * Retrieves the rows of the matrix into the supplied vectors. * * @param {goog.vec.Mat3.AnyType} mat The matrix to supplying the values. * @param {goog.vec.Vec3.AnyType} vec0 The vector to receive row 0. * @param {goog.vec.Vec3.AnyType} vec1 The vector to receive row 1. * @param {goog.vec.Vec3.AnyType} vec2 The vector to receive row 2. */goog.vec.Mat3.getRows = function(mat, vec0, vec1, vec2) {  goog.vec.Mat3.getRow(mat, 0, vec0);  goog.vec.Mat3.getRow(mat, 1, vec1);  goog.vec.Mat3.getRow(mat, 2, vec2);};/** * Makes the given 3x3 matrix the zero matrix. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @return {goog.vec.Mat3.AnyType} return mat so operations can be chained. */goog.vec.Mat3.makeZero = function(mat) {  mat[0] = 0;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = 0;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  return mat;};/** * Makes the given 3x3 matrix the identity matrix. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @return {goog.vec.Mat3.AnyType} return mat so operations can be chained. */goog.vec.Mat3.makeIdentity = function(mat) {  mat[0] = 1;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 1;  mat[5] = 0;  mat[6] = 0;  mat[7] = 0;  mat[8] = 1;  return mat;};/** * Performs a per-component addition of the matrices mat0 and mat1, storing * the result into resultMat. * * @param {goog.vec.Mat3.AnyType} mat0 The first addend. * @param {goog.vec.Mat3.AnyType} mat1 The second addend. * @param {goog.vec.Mat3.AnyType} resultMat The matrix to *     receive the results (may be either mat0 or mat1). * @return {goog.vec.Mat3.AnyType} return resultMat so that operations can be *     chained together. */goog.vec.Mat3.addMat = function(mat0, mat1, resultMat) {  resultMat[0] = mat0[0] + mat1[0];  resultMat[1] = mat0[1] + mat1[1];  resultMat[2] = mat0[2] + mat1[2];  resultMat[3] = mat0[3] + mat1[3];  resultMat[4] = mat0[4] + mat1[4];  resultMat[5] = mat0[5] + mat1[5];  resultMat[6] = mat0[6] + mat1[6];  resultMat[7] = mat0[7] + mat1[7];  resultMat[8] = mat0[8] + mat1[8];  return resultMat;};/** * Performs a per-component subtraction of the matrices mat0 and mat1, * storing the result into resultMat. * * @param {goog.vec.Mat3.AnyType} mat0 The minuend. * @param {goog.vec.Mat3.AnyType} mat1 The subtrahend. * @param {goog.vec.Mat3.AnyType} resultMat The matrix to receive *     the results (may be either mat0 or mat1). * @return {goog.vec.Mat3.AnyType} return resultMat so that operations can be *     chained together. */goog.vec.Mat3.subMat = function(mat0, mat1, resultMat) {  resultMat[0] = mat0[0] - mat1[0];  resultMat[1] = mat0[1] - mat1[1];  resultMat[2] = mat0[2] - mat1[2];  resultMat[3] = mat0[3] - mat1[3];  resultMat[4] = mat0[4] - mat1[4];  resultMat[5] = mat0[5] - mat1[5];  resultMat[6] = mat0[6] - mat1[6];  resultMat[7] = mat0[7] - mat1[7];  resultMat[8] = mat0[8] - mat1[8];  return resultMat;};/** * Multiplies matrix mat0 with the given scalar, storing the result * into resultMat. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} scalar The scalar value to multiple to each element of mat. * @param {goog.vec.Mat3.AnyType} resultMat The matrix to receive *     the results (may be mat). * @return {goog.vec.Mat3.AnyType} return resultMat so that operations can be *     chained together. */goog.vec.Mat3.multScalar = function(mat, scalar, resultMat) {  resultMat[0] = mat[0] * scalar;  resultMat[1] = mat[1] * scalar;  resultMat[2] = mat[2] * scalar;  resultMat[3] = mat[3] * scalar;  resultMat[4] = mat[4] * scalar;  resultMat[5] = mat[5] * scalar;  resultMat[6] = mat[6] * scalar;  resultMat[7] = mat[7] * scalar;  resultMat[8] = mat[8] * scalar;  return resultMat;};/** * Multiplies the two matrices mat0 and mat1 using matrix multiplication, * storing the result into resultMat. * * @param {goog.vec.Mat3.AnyType} mat0 The first (left hand) matrix. * @param {goog.vec.Mat3.AnyType} mat1 The second (right hand) matrix. * @param {goog.vec.Mat3.AnyType} resultMat The matrix to receive *     the results (may be either mat0 or mat1). * @return {goog.vec.Mat3.AnyType} return resultMat so that operations can be *     chained together. */goog.vec.Mat3.multMat = function(mat0, mat1, resultMat) {  var a00 = mat0[0], a10 = mat0[1], a20 = mat0[2];  var a01 = mat0[3], a11 = mat0[4], a21 = mat0[5];  var a02 = mat0[6], a12 = mat0[7], a22 = mat0[8];  var b00 = mat1[0], b10 = mat1[1], b20 = mat1[2];  var b01 = mat1[3], b11 = mat1[4], b21 = mat1[5];  var b02 = mat1[6], b12 = mat1[7], b22 = mat1[8];  resultMat[0] = a00 * b00 + a01 * b10 + a02 * b20;  resultMat[1] = a10 * b00 + a11 * b10 + a12 * b20;  resultMat[2] = a20 * b00 + a21 * b10 + a22 * b20;  resultMat[3] = a00 * b01 + a01 * b11 + a02 * b21;  resultMat[4] = a10 * b01 + a11 * b11 + a12 * b21;  resultMat[5] = a20 * b01 + a21 * b11 + a22 * b21;  resultMat[6] = a00 * b02 + a01 * b12 + a02 * b22;  resultMat[7] = a10 * b02 + a11 * b12 + a12 * b22;  resultMat[8] = a20 * b02 + a21 * b12 + a22 * b22;  return resultMat;};/** * Transposes the given matrix mat storing the result into resultMat. * * @param {goog.vec.Mat3.AnyType} mat The matrix to transpose. * @param {goog.vec.Mat3.AnyType} resultMat The matrix to receive *     the results (may be mat). * @return {goog.vec.Mat3.AnyType} return resultMat so that operations can be *     chained together. */goog.vec.Mat3.transpose = function(mat, resultMat) {  if (resultMat == mat) {    var a10 = mat[1], a20 = mat[2], a21 = mat[5];    resultMat[1] = mat[3];    resultMat[2] = mat[6];    resultMat[3] = a10;    resultMat[5] = mat[7];    resultMat[6] = a20;    resultMat[7] = a21;  } else {    resultMat[0] = mat[0];    resultMat[1] = mat[3];    resultMat[2] = mat[6];    resultMat[3] = mat[1];    resultMat[4] = mat[4];    resultMat[5] = mat[7];    resultMat[6] = mat[2];    resultMat[7] = mat[5];    resultMat[8] = mat[8];  }  return resultMat;};/** * Computes the inverse of mat0 storing the result into resultMat. If the * inverse is defined, this function returns true, false otherwise. * * @param {goog.vec.Mat3.AnyType} mat0 The matrix to invert. * @param {goog.vec.Mat3.AnyType} resultMat The matrix to receive *     the result (may be mat0). * @return {boolean} True if the inverse is defined. If false is returned, *     resultMat is not modified. */goog.vec.Mat3.invert = function(mat0, resultMat) {  var a00 = mat0[0], a10 = mat0[1], a20 = mat0[2];  var a01 = mat0[3], a11 = mat0[4], a21 = mat0[5];  var a02 = mat0[6], a12 = mat0[7], a22 = mat0[8];  var t00 = a11 * a22 - a12 * a21;  var t10 = a12 * a20 - a10 * a22;  var t20 = a10 * a21 - a11 * a20;  var det = a00 * t00 + a01 * t10 + a02 * t20;  if (det == 0) {    return false;  }  var idet = 1 / det;  resultMat[0] = t00 * idet;  resultMat[3] = (a02 * a21 - a01 * a22) * idet;  resultMat[6] = (a01 * a12 - a02 * a11) * idet;  resultMat[1] = t10 * idet;  resultMat[4] = (a00 * a22 - a02 * a20) * idet;  resultMat[7] = (a02 * a10 - a00 * a12) * idet;  resultMat[2] = t20 * idet;  resultMat[5] = (a01 * a20 - a00 * a21) * idet;  resultMat[8] = (a00 * a11 - a01 * a10) * idet;  return true;};/** * Returns true if the components of mat0 are equal to the components of mat1. * * @param {goog.vec.Mat3.AnyType} mat0 The first matrix. * @param {goog.vec.Mat3.AnyType} mat1 The second matrix. * @return {boolean} True if the the two matrices are equivalent. */goog.vec.Mat3.equals = function(mat0, mat1) {  return mat0.length == mat1.length && mat0[0] == mat1[0] &&      mat0[1] == mat1[1] && mat0[2] == mat1[2] && mat0[3] == mat1[3] &&      mat0[4] == mat1[4] && mat0[5] == mat1[5] && mat0[6] == mat1[6] &&      mat0[7] == mat1[7] && mat0[8] == mat1[8];};/** * Transforms the given vector with the given matrix storing the resulting, * transformed matrix into resultVec. * * @param {goog.vec.Mat3.AnyType} mat The matrix supplying the transformation. * @param {goog.vec.Vec3.AnyType} vec The vector to transform. * @param {goog.vec.Vec3.AnyType} resultVec The vector to *     receive the results (may be vec). * @return {goog.vec.Vec3.AnyType} return resultVec so that operations can be *     chained together. */goog.vec.Mat3.multVec3 = function(mat, vec, resultVec) {  var x = vec[0], y = vec[1], z = vec[2];  resultVec[0] = x * mat[0] + y * mat[3] + z * mat[6];  resultVec[1] = x * mat[1] + y * mat[4] + z * mat[7];  resultVec[2] = x * mat[2] + y * mat[5] + z * mat[8];  return resultVec;};/** * Makes the given 3x3 matrix a translation matrix with x and y * translation values. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} x The translation along the x axis. * @param {number} y The translation along the y axis. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeTranslate = function(mat, x, y) {  goog.vec.Mat3.makeIdentity(mat);  return goog.vec.Mat3.setColumnValues(mat, 2, x, y, 1);};/** * Makes the given 3x3 matrix a scale matrix with x, y, and z scale factors. * * @param {goog.vec.Mat3.AnyType} mat The 3x3 (9-element) matrix *     array to receive the new scale matrix. * @param {number} x The scale along the x axis. * @param {number} y The scale along the y axis. * @param {number} z The scale along the z axis. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeScale = function(mat, x, y, z) {  goog.vec.Mat3.makeIdentity(mat);  return goog.vec.Mat3.setDiagonalValues(mat, x, y, z);};/** * Makes the given 3x3 matrix a rotation matrix with the given rotation * angle about the axis defined by the vector (ax, ay, az). * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The rotation angle in radians. * @param {number} ax The x component of the rotation axis. * @param {number} ay The y component of the rotation axis. * @param {number} az The z component of the rotation axis. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeRotate = function(mat, angle, ax, ay, az) {  var c = Math.cos(angle);  var d = 1 - c;  var s = Math.sin(angle);  return goog.vec.Mat3.setFromValues(      mat, ax * ax * d + c, ax * ay * d + az * s, ax * az * d - ay * s,      ax * ay * d - az * s, ay * ay * d + c, ay * az * d + ax * s,      ax * az * d + ay * s, ay * az * d - ax * s, az * az * d + c);};/** * Makes the given 3x3 matrix a rotation matrix with the given rotation * angle about the X axis. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The rotation angle in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeRotateX = function(mat, angle) {  var c = Math.cos(angle);  var s = Math.sin(angle);  return goog.vec.Mat3.setFromValues(mat, 1, 0, 0, 0, c, s, 0, -s, c);};/** * Makes the given 3x3 matrix a rotation matrix with the given rotation * angle about the Y axis. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The rotation angle in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeRotateY = function(mat, angle) {  var c = Math.cos(angle);  var s = Math.sin(angle);  return goog.vec.Mat3.setFromValues(mat, c, 0, -s, 0, 1, 0, s, 0, c);};/** * Makes the given 3x3 matrix a rotation matrix with the given rotation * angle about the Z axis. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The rotation angle in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeRotateZ = function(mat, angle) {  var c = Math.cos(angle);  var s = Math.sin(angle);  return goog.vec.Mat3.setFromValues(mat, c, s, 0, -s, c, 0, 0, 0, 1);};/** * Rotate the given matrix by angle about the x,y,z axis.  Equivalent to: * goog.vec.Mat3.multMat( *     mat, *     goog.vec.Mat3.makeRotate(goog.vec.Mat3.create(), angle, x, y, z), *     mat); * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The angle in radians. * @param {number} x The x component of the rotation axis. * @param {number} y The y component of the rotation axis. * @param {number} z The z component of the rotation axis. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.rotate = function(mat, angle, x, y, z) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2];  var m01 = mat[3], m11 = mat[4], m21 = mat[5];  var m02 = mat[6], m12 = mat[7], m22 = mat[8];  var cosAngle = Math.cos(angle);  var sinAngle = Math.sin(angle);  var diffCosAngle = 1 - cosAngle;  var r00 = x * x * diffCosAngle + cosAngle;  var r10 = x * y * diffCosAngle + z * sinAngle;  var r20 = x * z * diffCosAngle - y * sinAngle;  var r01 = x * y * diffCosAngle - z * sinAngle;  var r11 = y * y * diffCosAngle + cosAngle;  var r21 = y * z * diffCosAngle + x * sinAngle;  var r02 = x * z * diffCosAngle + y * sinAngle;  var r12 = y * z * diffCosAngle - x * sinAngle;  var r22 = z * z * diffCosAngle + cosAngle;  return goog.vec.Mat3.setFromValues(      mat, m00 * r00 + m01 * r10 + m02 * r20, m10 * r00 + m11 * r10 + m12 * r20,      m20 * r00 + m21 * r10 + m22 * r20,      m00 * r01 + m01 * r11 + m02 * r21, m10 * r01 + m11 * r11 + m12 * r21,      m20 * r01 + m21 * r11 + m22 * r21,      m00 * r02 + m01 * r12 + m02 * r22, m10 * r02 + m11 * r12 + m12 * r22,      m20 * r02 + m21 * r12 + m22 * r22);};/** * Rotate the given matrix by angle about the x axis.  Equivalent to: * goog.vec.Mat3.multMat( *     mat, *     goog.vec.Mat3.makeRotateX(goog.vec.Mat3.create(), angle), *     mat); * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The angle in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.rotateX = function(mat, angle) {  var m01 = mat[3], m11 = mat[4], m21 = mat[5];  var m02 = mat[6], m12 = mat[7], m22 = mat[8];  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[3] = m01 * c + m02 * s;  mat[4] = m11 * c + m12 * s;  mat[5] = m21 * c + m22 * s;  mat[6] = m01 * -s + m02 * c;  mat[7] = m11 * -s + m12 * c;  mat[8] = m21 * -s + m22 * c;  return mat;};/** * Rotate the given matrix by angle about the y axis.  Equivalent to: * goog.vec.Mat3.multMat( *     mat, *     goog.vec.Mat3.makeRotateY(goog.vec.Mat3.create(), angle), *     mat); * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The angle in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.rotateY = function(mat, angle) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2];  var m02 = mat[6], m12 = mat[7], m22 = mat[8];  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = m00 * c + m02 * -s;  mat[1] = m10 * c + m12 * -s;  mat[2] = m20 * c + m22 * -s;  mat[6] = m00 * s + m02 * c;  mat[7] = m10 * s + m12 * c;  mat[8] = m20 * s + m22 * c;  return mat;};/** * Rotate the given matrix by angle about the z axis.  Equivalent to: * goog.vec.Mat3.multMat( *     mat, *     goog.vec.Mat3.makeRotateZ(goog.vec.Mat3.create(), angle), *     mat); * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} angle The angle in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.rotateZ = function(mat, angle) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2];  var m01 = mat[3], m11 = mat[4], m21 = mat[5];  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = m00 * c + m01 * s;  mat[1] = m10 * c + m11 * s;  mat[2] = m20 * c + m21 * s;  mat[3] = m00 * -s + m01 * c;  mat[4] = m10 * -s + m11 * c;  mat[5] = m20 * -s + m21 * c;  return mat;};/** * Makes the given 3x3 matrix a rotation matrix given Euler angles using * the ZXZ convention. * Given the euler angles [theta1, theta2, theta3], the rotation is defined as * rotation = rotation_z(theta1) * rotation_x(theta2) * rotation_z(theta3), * with theta1 in [0, 2 * pi], theta2 in [0, pi] and theta3 in [0, 2 * pi]. * rotation_x(theta) means rotation around the X axis of theta radians. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {number} theta1 The angle of rotation around the Z axis in radians. * @param {number} theta2 The angle of rotation around the X axis in radians. * @param {number} theta3 The angle of rotation around the Z axis in radians. * @return {goog.vec.Mat3.AnyType} return mat so that operations can be *     chained. */goog.vec.Mat3.makeEulerZXZ = function(mat, theta1, theta2, theta3) {  var c1 = Math.cos(theta1);  var s1 = Math.sin(theta1);  var c2 = Math.cos(theta2);  var s2 = Math.sin(theta2);  var c3 = Math.cos(theta3);  var s3 = Math.sin(theta3);  mat[0] = c1 * c3 - c2 * s1 * s3;  mat[1] = c2 * c1 * s3 + c3 * s1;  mat[2] = s3 * s2;  mat[3] = -c1 * s3 - c3 * c2 * s1;  mat[4] = c1 * c2 * c3 - s1 * s3;  mat[5] = c3 * s2;  mat[6] = s2 * s1;  mat[7] = -c1 * s2;  mat[8] = c2;  return mat;};/** * Decomposes a rotation matrix into Euler angles using the ZXZ convention so * that rotation = rotation_z(theta1) * rotation_x(theta2) * rotation_z(theta3), * with theta1 in [0, 2 * pi], theta2 in [0, pi] and theta3 in [0, 2 * pi]. * rotation_x(theta) means rotation around the X axis of theta radians. * * @param {goog.vec.Mat3.AnyType} mat The matrix. * @param {goog.vec.Vec3.AnyType} euler The ZXZ Euler angles in *     radians as [theta1, theta2, theta3]. * @param {boolean=} opt_theta2IsNegative Whether theta2 is in [-pi, 0] instead *     of the default [0, pi]. * @return {goog.vec.Vec3.AnyType} return euler so that operations can be *     chained together. */goog.vec.Mat3.toEulerZXZ = function(mat, euler, opt_theta2IsNegative) {  // There is an ambiguity in the sign of sinTheta2 because of the sqrt.  var sinTheta2 = Math.sqrt(mat[2] * mat[2] + mat[5] * mat[5]);  // By default we explicitely constrain theta2 to be in [0, pi],  // so sinTheta2 is always positive. We can change the behavior and specify  // theta2 to be negative in [-pi, 0] with opt_Theta2IsNegative.  var signTheta2 = opt_theta2IsNegative ? -1 : 1;  if (sinTheta2 > goog.vec.EPSILON) {    euler[2] = Math.atan2(mat[2] * signTheta2, mat[5] * signTheta2);    euler[1] = Math.atan2(sinTheta2 * signTheta2, mat[8]);    euler[0] = Math.atan2(mat[6] * signTheta2, -mat[7] * signTheta2);  } else {    // There is also an arbitrary choice for theta1 = 0 or theta2 = 0 here.    // We assume theta1 = 0 as some applications do not allow the camera to roll    // (i.e. have theta1 != 0).    euler[0] = 0;    euler[1] = Math.atan2(sinTheta2 * signTheta2, mat[8]);    euler[2] = Math.atan2(mat[1], mat[0]);  }  // Atan2 outputs angles in [-pi, pi] so we bring them back to [0, 2 * pi].  euler[0] = (euler[0] + Math.PI * 2) % (Math.PI * 2);  euler[2] = (euler[2] + Math.PI * 2) % (Math.PI * 2);  // For theta2 we want the angle to be in [0, pi] or [-pi, 0] depending on  // signTheta2.  euler[1] =      ((euler[1] * signTheta2 + Math.PI * 2) % (Math.PI * 2)) * signTheta2;  return euler;};
 |