12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943 |
- // Copyright 2013 The Closure Library Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS-IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ////////////////////////// NOTE ABOUT EDITING THIS FILE ///////////////////////
- // //
- // Any edits to this file must be applied to mat4d.js by running: //
- // swap_type.sh mat4f.js > mat4d.js //
- // //
- ////////////////////////// NOTE ABOUT EDITING THIS FILE ///////////////////////
- /**
- * @fileoverview Provides functions for operating on 4x4 float (32bit)
- * matrices. The matrices are stored in column-major order.
- *
- * The last parameter will typically be the output matrix and an
- * object can be both an input and output parameter to all methods except
- * where noted.
- *
- * See the README for notes about the design and structure of the API
- * (especially related to performance).
- *
- */
- goog.provide('goog.vec.mat4f');
- goog.provide('goog.vec.mat4f.Type');
- goog.require('goog.vec');
- /** @suppress {extraRequire} */
- goog.require('goog.vec.Quaternion');
- goog.require('goog.vec.vec3f');
- goog.require('goog.vec.vec4f');
- /** @typedef {goog.vec.Float32} */ goog.vec.mat4f.Type;
- /**
- * Creates a mat4f with all elements initialized to zero.
- *
- * @return {!goog.vec.mat4f.Type} The new mat4f.
- */
- goog.vec.mat4f.create = function() {
- return new Float32Array(16);
- };
- /**
- * Creates a mat4f identity matrix.
- *
- * @return {!goog.vec.mat4f.Type} The new mat4f.
- */
- goog.vec.mat4f.createIdentity = function() {
- var mat = goog.vec.mat4f.create();
- mat[0] = mat[5] = mat[10] = mat[15] = 1;
- return mat;
- };
- /**
- * Initializes the matrix from the set of values. Note the values supplied are
- * in column major order.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the
- * values.
- * @param {number} v00 The values at (0, 0).
- * @param {number} v10 The values at (1, 0).
- * @param {number} v20 The values at (2, 0).
- * @param {number} v30 The values at (3, 0).
- * @param {number} v01 The values at (0, 1).
- * @param {number} v11 The values at (1, 1).
- * @param {number} v21 The values at (2, 1).
- * @param {number} v31 The values at (3, 1).
- * @param {number} v02 The values at (0, 2).
- * @param {number} v12 The values at (1, 2).
- * @param {number} v22 The values at (2, 2).
- * @param {number} v32 The values at (3, 2).
- * @param {number} v03 The values at (0, 3).
- * @param {number} v13 The values at (1, 3).
- * @param {number} v23 The values at (2, 3).
- * @param {number} v33 The values at (3, 3).
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setFromValues = function(
- mat, v00, v10, v20, v30, v01, v11, v21, v31, v02, v12, v22, v32, v03, v13,
- v23, v33) {
- mat[0] = v00;
- mat[1] = v10;
- mat[2] = v20;
- mat[3] = v30;
- mat[4] = v01;
- mat[5] = v11;
- mat[6] = v21;
- mat[7] = v31;
- mat[8] = v02;
- mat[9] = v12;
- mat[10] = v22;
- mat[11] = v32;
- mat[12] = v03;
- mat[13] = v13;
- mat[14] = v23;
- mat[15] = v33;
- return mat;
- };
- /**
- * Initializes mat4f mat from mat4f src.
- *
- * @param {!goog.vec.mat4f.Type} mat The destination matrix.
- * @param {!goog.vec.mat4f.Type} src The source matrix.
- * @return {!goog.vec.mat4f.Type} Return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setFromMat4f = function(mat, src) {
- mat[0] = src[0];
- mat[1] = src[1];
- mat[2] = src[2];
- mat[3] = src[3];
- mat[4] = src[4];
- mat[5] = src[5];
- mat[6] = src[6];
- mat[7] = src[7];
- mat[8] = src[8];
- mat[9] = src[9];
- mat[10] = src[10];
- mat[11] = src[11];
- mat[12] = src[12];
- mat[13] = src[13];
- mat[14] = src[14];
- mat[15] = src[15];
- return mat;
- };
- /**
- * Initializes mat4f mat from mat4d src (typed as a Float64Array to
- * avoid circular goog.requires).
- *
- * @param {!goog.vec.mat4f.Type} mat The destination matrix.
- * @param {Float64Array} src The source matrix.
- * @return {!goog.vec.mat4f.Type} Return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setFromMat4d = function(mat, src) {
- mat[0] = src[0];
- mat[1] = src[1];
- mat[2] = src[2];
- mat[3] = src[3];
- mat[4] = src[4];
- mat[5] = src[5];
- mat[6] = src[6];
- mat[7] = src[7];
- mat[8] = src[8];
- mat[9] = src[9];
- mat[10] = src[10];
- mat[11] = src[11];
- mat[12] = src[12];
- mat[13] = src[13];
- mat[14] = src[14];
- mat[15] = src[15];
- return mat;
- };
- /**
- * Initializes mat4f mat from Array src.
- *
- * @param {!goog.vec.mat4f.Type} mat The destination matrix.
- * @param {Array<number>} src The source matrix.
- * @return {!goog.vec.mat4f.Type} Return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setFromArray = function(mat, src) {
- mat[0] = src[0];
- mat[1] = src[1];
- mat[2] = src[2];
- mat[3] = src[3];
- mat[4] = src[4];
- mat[5] = src[5];
- mat[6] = src[6];
- mat[7] = src[7];
- mat[8] = src[8];
- mat[9] = src[9];
- mat[10] = src[10];
- mat[11] = src[11];
- mat[12] = src[12];
- mat[13] = src[13];
- mat[14] = src[14];
- mat[15] = src[15];
- return mat;
- };
- /**
- * Retrieves the element at the requested row and column.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix containing the value to
- * retrieve.
- * @param {number} row The row index.
- * @param {number} column The column index.
- * @return {number} The element value at the requested row, column indices.
- */
- goog.vec.mat4f.getElement = function(mat, row, column) {
- return mat[row + column * 4];
- };
- /**
- * Sets the element at the requested row and column.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix containing the value to
- * retrieve.
- * @param {number} row The row index.
- * @param {number} column The column index.
- * @param {number} value The value to set at the requested row, column.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setElement = function(mat, row, column, value) {
- mat[row + column * 4] = value;
- return mat;
- };
- /**
- * Sets the diagonal values of the matrix from the given values.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {number} v00 The values for (0, 0).
- * @param {number} v11 The values for (1, 1).
- * @param {number} v22 The values for (2, 2).
- * @param {number} v33 The values for (3, 3).
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setDiagonalValues = function(mat, v00, v11, v22, v33) {
- mat[0] = v00;
- mat[5] = v11;
- mat[10] = v22;
- mat[15] = v33;
- return mat;
- };
- /**
- * Sets the diagonal values of the matrix from the given vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {!goog.vec.vec4f.Type} vec The vector containing the values.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setDiagonal = function(mat, vec) {
- mat[0] = vec[0];
- mat[5] = vec[1];
- mat[10] = vec[2];
- mat[15] = vec[3];
- return mat;
- };
- /**
- * Gets the diagonal values of the matrix into the given vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix containing the values.
- * @param {!goog.vec.vec4f.Type} vec The vector to receive the values.
- * @param {number=} opt_diagonal Which diagonal to get. A value of 0 selects the
- * main diagonal, a positive number selects a super diagonal and a negative
- * number selects a sub diagonal.
- * @return {!goog.vec.vec4f.Type} return vec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.getDiagonal = function(mat, vec, opt_diagonal) {
- if (!opt_diagonal) {
- // This is the most common case, so we avoid the for loop.
- vec[0] = mat[0];
- vec[1] = mat[5];
- vec[2] = mat[10];
- vec[3] = mat[15];
- } else {
- var offset = opt_diagonal > 0 ? 4 * opt_diagonal : -opt_diagonal;
- for (var i = 0; i < 4 - Math.abs(opt_diagonal); i++) {
- vec[i] = mat[offset + 5 * i];
- }
- }
- return vec;
- };
- /**
- * Sets the specified column with the supplied values.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {number} column The column index to set the values on.
- * @param {number} v0 The value for row 0.
- * @param {number} v1 The value for row 1.
- * @param {number} v2 The value for row 2.
- * @param {number} v3 The value for row 3.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setColumnValues = function(mat, column, v0, v1, v2, v3) {
- var i = column * 4;
- mat[i] = v0;
- mat[i + 1] = v1;
- mat[i + 2] = v2;
- mat[i + 3] = v3;
- return mat;
- };
- /**
- * Sets the specified column with the value from the supplied vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {number} column The column index to set the values on.
- * @param {!goog.vec.vec4f.Type} vec The vector of elements for the column.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setColumn = function(mat, column, vec) {
- var i = column * 4;
- mat[i] = vec[0];
- mat[i + 1] = vec[1];
- mat[i + 2] = vec[2];
- mat[i + 3] = vec[3];
- return mat;
- };
- /**
- * Retrieves the specified column from the matrix into the given vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the values.
- * @param {number} column The column to get the values from.
- * @param {!goog.vec.vec4f.Type} vec The vector of elements to
- * receive the column.
- * @return {!goog.vec.vec4f.Type} return vec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.getColumn = function(mat, column, vec) {
- var i = column * 4;
- vec[0] = mat[i];
- vec[1] = mat[i + 1];
- vec[2] = mat[i + 2];
- vec[3] = mat[i + 3];
- return vec;
- };
- /**
- * Sets the columns of the matrix from the given vectors.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {!goog.vec.vec4f.Type} vec0 The values for column 0.
- * @param {!goog.vec.vec4f.Type} vec1 The values for column 1.
- * @param {!goog.vec.vec4f.Type} vec2 The values for column 2.
- * @param {!goog.vec.vec4f.Type} vec3 The values for column 3.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setColumns = function(mat, vec0, vec1, vec2, vec3) {
- mat[0] = vec0[0];
- mat[1] = vec0[1];
- mat[2] = vec0[2];
- mat[3] = vec0[3];
- mat[4] = vec1[0];
- mat[5] = vec1[1];
- mat[6] = vec1[2];
- mat[7] = vec1[3];
- mat[8] = vec2[0];
- mat[9] = vec2[1];
- mat[10] = vec2[2];
- mat[11] = vec2[3];
- mat[12] = vec3[0];
- mat[13] = vec3[1];
- mat[14] = vec3[2];
- mat[15] = vec3[3];
- return mat;
- };
- /**
- * Retrieves the column values from the given matrix into the given vectors.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the columns.
- * @param {!goog.vec.vec4f.Type} vec0 The vector to receive column 0.
- * @param {!goog.vec.vec4f.Type} vec1 The vector to receive column 1.
- * @param {!goog.vec.vec4f.Type} vec2 The vector to receive column 2.
- * @param {!goog.vec.vec4f.Type} vec3 The vector to receive column 3.
- */
- goog.vec.mat4f.getColumns = function(mat, vec0, vec1, vec2, vec3) {
- vec0[0] = mat[0];
- vec0[1] = mat[1];
- vec0[2] = mat[2];
- vec0[3] = mat[3];
- vec1[0] = mat[4];
- vec1[1] = mat[5];
- vec1[2] = mat[6];
- vec1[3] = mat[7];
- vec2[0] = mat[8];
- vec2[1] = mat[9];
- vec2[2] = mat[10];
- vec2[3] = mat[11];
- vec3[0] = mat[12];
- vec3[1] = mat[13];
- vec3[2] = mat[14];
- vec3[3] = mat[15];
- };
- /**
- * Sets the row values from the supplied values.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {number} row The index of the row to receive the values.
- * @param {number} v0 The value for column 0.
- * @param {number} v1 The value for column 1.
- * @param {number} v2 The value for column 2.
- * @param {number} v3 The value for column 3.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setRowValues = function(mat, row, v0, v1, v2, v3) {
- mat[row] = v0;
- mat[row + 4] = v1;
- mat[row + 8] = v2;
- mat[row + 12] = v3;
- return mat;
- };
- /**
- * Sets the row values from the supplied vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the row values.
- * @param {number} row The index of the row.
- * @param {!goog.vec.vec4f.Type} vec The vector containing the values.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setRow = function(mat, row, vec) {
- mat[row] = vec[0];
- mat[row + 4] = vec[1];
- mat[row + 8] = vec[2];
- mat[row + 12] = vec[3];
- return mat;
- };
- /**
- * Retrieves the row values into the given vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the values.
- * @param {number} row The index of the row supplying the values.
- * @param {!goog.vec.vec4f.Type} vec The vector to receive the row.
- * @return {!goog.vec.vec4f.Type} return vec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.getRow = function(mat, row, vec) {
- vec[0] = mat[row];
- vec[1] = mat[row + 4];
- vec[2] = mat[row + 8];
- vec[3] = mat[row + 12];
- return vec;
- };
- /**
- * Sets the rows of the matrix from the supplied vectors.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to receive the values.
- * @param {!goog.vec.vec4f.Type} vec0 The values for row 0.
- * @param {!goog.vec.vec4f.Type} vec1 The values for row 1.
- * @param {!goog.vec.vec4f.Type} vec2 The values for row 2.
- * @param {!goog.vec.vec4f.Type} vec3 The values for row 3.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.setRows = function(mat, vec0, vec1, vec2, vec3) {
- mat[0] = vec0[0];
- mat[1] = vec1[0];
- mat[2] = vec2[0];
- mat[3] = vec3[0];
- mat[4] = vec0[1];
- mat[5] = vec1[1];
- mat[6] = vec2[1];
- mat[7] = vec3[1];
- mat[8] = vec0[2];
- mat[9] = vec1[2];
- mat[10] = vec2[2];
- mat[11] = vec3[2];
- mat[12] = vec0[3];
- mat[13] = vec1[3];
- mat[14] = vec2[3];
- mat[15] = vec3[3];
- return mat;
- };
- /**
- * Retrieves the rows of the matrix into the supplied vectors.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to supply the values.
- * @param {!goog.vec.vec4f.Type} vec0 The vector to receive row 0.
- * @param {!goog.vec.vec4f.Type} vec1 The vector to receive row 1.
- * @param {!goog.vec.vec4f.Type} vec2 The vector to receive row 2.
- * @param {!goog.vec.vec4f.Type} vec3 The vector to receive row 3.
- */
- goog.vec.mat4f.getRows = function(mat, vec0, vec1, vec2, vec3) {
- vec0[0] = mat[0];
- vec1[0] = mat[1];
- vec2[0] = mat[2];
- vec3[0] = mat[3];
- vec0[1] = mat[4];
- vec1[1] = mat[5];
- vec2[1] = mat[6];
- vec3[1] = mat[7];
- vec0[2] = mat[8];
- vec1[2] = mat[9];
- vec2[2] = mat[10];
- vec3[2] = mat[11];
- vec0[3] = mat[12];
- vec1[3] = mat[13];
- vec2[3] = mat[14];
- vec3[3] = mat[15];
- };
- /**
- * Makes the given 4x4 matrix the zero matrix.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @return {!goog.vec.mat4f.Type} return mat so operations can be chained.
- */
- goog.vec.mat4f.makeZero = function(mat) {
- mat[0] = 0;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = 0;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = 0;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 0;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix the identity matrix.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @return {!goog.vec.mat4f.Type} return mat so operations can be chained.
- */
- goog.vec.mat4f.makeIdentity = function(mat) {
- mat[0] = 1;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = 1;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = 1;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Performs a per-component addition of the matrix mat0 and mat1, storing
- * the result into resultMat.
- *
- * @param {!goog.vec.mat4f.Type} mat0 The first addend.
- * @param {!goog.vec.mat4f.Type} mat1 The second addend.
- * @param {!goog.vec.mat4f.Type} resultMat The matrix to
- * receive the results (may be either mat0 or mat1).
- * @return {!goog.vec.mat4f.Type} return resultMat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.addMat = function(mat0, mat1, resultMat) {
- resultMat[0] = mat0[0] + mat1[0];
- resultMat[1] = mat0[1] + mat1[1];
- resultMat[2] = mat0[2] + mat1[2];
- resultMat[3] = mat0[3] + mat1[3];
- resultMat[4] = mat0[4] + mat1[4];
- resultMat[5] = mat0[5] + mat1[5];
- resultMat[6] = mat0[6] + mat1[6];
- resultMat[7] = mat0[7] + mat1[7];
- resultMat[8] = mat0[8] + mat1[8];
- resultMat[9] = mat0[9] + mat1[9];
- resultMat[10] = mat0[10] + mat1[10];
- resultMat[11] = mat0[11] + mat1[11];
- resultMat[12] = mat0[12] + mat1[12];
- resultMat[13] = mat0[13] + mat1[13];
- resultMat[14] = mat0[14] + mat1[14];
- resultMat[15] = mat0[15] + mat1[15];
- return resultMat;
- };
- /**
- * Performs a per-component subtraction of the matrix mat0 and mat1,
- * storing the result into resultMat.
- *
- * @param {!goog.vec.mat4f.Type} mat0 The minuend.
- * @param {!goog.vec.mat4f.Type} mat1 The subtrahend.
- * @param {!goog.vec.mat4f.Type} resultMat The matrix to receive
- * the results (may be either mat0 or mat1).
- * @return {!goog.vec.mat4f.Type} return resultMat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.subMat = function(mat0, mat1, resultMat) {
- resultMat[0] = mat0[0] - mat1[0];
- resultMat[1] = mat0[1] - mat1[1];
- resultMat[2] = mat0[2] - mat1[2];
- resultMat[3] = mat0[3] - mat1[3];
- resultMat[4] = mat0[4] - mat1[4];
- resultMat[5] = mat0[5] - mat1[5];
- resultMat[6] = mat0[6] - mat1[6];
- resultMat[7] = mat0[7] - mat1[7];
- resultMat[8] = mat0[8] - mat1[8];
- resultMat[9] = mat0[9] - mat1[9];
- resultMat[10] = mat0[10] - mat1[10];
- resultMat[11] = mat0[11] - mat1[11];
- resultMat[12] = mat0[12] - mat1[12];
- resultMat[13] = mat0[13] - mat1[13];
- resultMat[14] = mat0[14] - mat1[14];
- resultMat[15] = mat0[15] - mat1[15];
- return resultMat;
- };
- /**
- * Multiplies matrix mat with the given scalar, storing the result
- * into resultMat.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} scalar The scalar value to multiply to each element of mat.
- * @param {!goog.vec.mat4f.Type} resultMat The matrix to receive
- * the results (may be mat).
- * @return {!goog.vec.mat4f.Type} return resultMat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.multScalar = function(mat, scalar, resultMat) {
- resultMat[0] = mat[0] * scalar;
- resultMat[1] = mat[1] * scalar;
- resultMat[2] = mat[2] * scalar;
- resultMat[3] = mat[3] * scalar;
- resultMat[4] = mat[4] * scalar;
- resultMat[5] = mat[5] * scalar;
- resultMat[6] = mat[6] * scalar;
- resultMat[7] = mat[7] * scalar;
- resultMat[8] = mat[8] * scalar;
- resultMat[9] = mat[9] * scalar;
- resultMat[10] = mat[10] * scalar;
- resultMat[11] = mat[11] * scalar;
- resultMat[12] = mat[12] * scalar;
- resultMat[13] = mat[13] * scalar;
- resultMat[14] = mat[14] * scalar;
- resultMat[15] = mat[15] * scalar;
- return resultMat;
- };
- /**
- * Multiplies the two matrices mat0 and mat1 using matrix multiplication,
- * storing the result into resultMat.
- *
- * @param {!goog.vec.mat4f.Type} mat0 The first (left hand) matrix.
- * @param {!goog.vec.mat4f.Type} mat1 The second (right hand) matrix.
- * @param {!goog.vec.mat4f.Type} resultMat The matrix to receive
- * the results (may be either mat0 or mat1).
- * @return {!goog.vec.mat4f.Type} return resultMat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.multMat = function(mat0, mat1, resultMat) {
- var a00 = mat0[0], a10 = mat0[1], a20 = mat0[2], a30 = mat0[3];
- var a01 = mat0[4], a11 = mat0[5], a21 = mat0[6], a31 = mat0[7];
- var a02 = mat0[8], a12 = mat0[9], a22 = mat0[10], a32 = mat0[11];
- var a03 = mat0[12], a13 = mat0[13], a23 = mat0[14], a33 = mat0[15];
- var b00 = mat1[0], b10 = mat1[1], b20 = mat1[2], b30 = mat1[3];
- var b01 = mat1[4], b11 = mat1[5], b21 = mat1[6], b31 = mat1[7];
- var b02 = mat1[8], b12 = mat1[9], b22 = mat1[10], b32 = mat1[11];
- var b03 = mat1[12], b13 = mat1[13], b23 = mat1[14], b33 = mat1[15];
- resultMat[0] = a00 * b00 + a01 * b10 + a02 * b20 + a03 * b30;
- resultMat[1] = a10 * b00 + a11 * b10 + a12 * b20 + a13 * b30;
- resultMat[2] = a20 * b00 + a21 * b10 + a22 * b20 + a23 * b30;
- resultMat[3] = a30 * b00 + a31 * b10 + a32 * b20 + a33 * b30;
- resultMat[4] = a00 * b01 + a01 * b11 + a02 * b21 + a03 * b31;
- resultMat[5] = a10 * b01 + a11 * b11 + a12 * b21 + a13 * b31;
- resultMat[6] = a20 * b01 + a21 * b11 + a22 * b21 + a23 * b31;
- resultMat[7] = a30 * b01 + a31 * b11 + a32 * b21 + a33 * b31;
- resultMat[8] = a00 * b02 + a01 * b12 + a02 * b22 + a03 * b32;
- resultMat[9] = a10 * b02 + a11 * b12 + a12 * b22 + a13 * b32;
- resultMat[10] = a20 * b02 + a21 * b12 + a22 * b22 + a23 * b32;
- resultMat[11] = a30 * b02 + a31 * b12 + a32 * b22 + a33 * b32;
- resultMat[12] = a00 * b03 + a01 * b13 + a02 * b23 + a03 * b33;
- resultMat[13] = a10 * b03 + a11 * b13 + a12 * b23 + a13 * b33;
- resultMat[14] = a20 * b03 + a21 * b13 + a22 * b23 + a23 * b33;
- resultMat[15] = a30 * b03 + a31 * b13 + a32 * b23 + a33 * b33;
- return resultMat;
- };
- /**
- * Transposes the given matrix mat storing the result into resultMat.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to transpose.
- * @param {!goog.vec.mat4f.Type} resultMat The matrix to receive
- * the results (may be mat).
- * @return {!goog.vec.mat4f.Type} return resultMat so that operations can be
- * chained together.
- */
- goog.vec.mat4f.transpose = function(mat, resultMat) {
- if (resultMat == mat) {
- var a10 = mat[1], a20 = mat[2], a30 = mat[3];
- var a21 = mat[6], a31 = mat[7];
- var a32 = mat[11];
- resultMat[1] = mat[4];
- resultMat[2] = mat[8];
- resultMat[3] = mat[12];
- resultMat[4] = a10;
- resultMat[6] = mat[9];
- resultMat[7] = mat[13];
- resultMat[8] = a20;
- resultMat[9] = a21;
- resultMat[11] = mat[14];
- resultMat[12] = a30;
- resultMat[13] = a31;
- resultMat[14] = a32;
- } else {
- resultMat[0] = mat[0];
- resultMat[1] = mat[4];
- resultMat[2] = mat[8];
- resultMat[3] = mat[12];
- resultMat[4] = mat[1];
- resultMat[5] = mat[5];
- resultMat[6] = mat[9];
- resultMat[7] = mat[13];
- resultMat[8] = mat[2];
- resultMat[9] = mat[6];
- resultMat[10] = mat[10];
- resultMat[11] = mat[14];
- resultMat[12] = mat[3];
- resultMat[13] = mat[7];
- resultMat[14] = mat[11];
- resultMat[15] = mat[15];
- }
- return resultMat;
- };
- /**
- * Computes the determinant of the matrix.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to compute the matrix for.
- * @return {number} The determinant of the matrix.
- */
- goog.vec.mat4f.determinant = function(mat) {
- var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];
- var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];
- var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];
- var m03 = mat[12], m13 = mat[13], m23 = mat[14], m33 = mat[15];
- var a0 = m00 * m11 - m10 * m01;
- var a1 = m00 * m21 - m20 * m01;
- var a2 = m00 * m31 - m30 * m01;
- var a3 = m10 * m21 - m20 * m11;
- var a4 = m10 * m31 - m30 * m11;
- var a5 = m20 * m31 - m30 * m21;
- var b0 = m02 * m13 - m12 * m03;
- var b1 = m02 * m23 - m22 * m03;
- var b2 = m02 * m33 - m32 * m03;
- var b3 = m12 * m23 - m22 * m13;
- var b4 = m12 * m33 - m32 * m13;
- var b5 = m22 * m33 - m32 * m23;
- return a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0;
- };
- /**
- * Computes the inverse of mat storing the result into resultMat. If the
- * inverse is defined, this function returns true, false otherwise.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix to invert.
- * @param {!goog.vec.mat4f.Type} resultMat The matrix to receive
- * the result (may be mat).
- * @return {boolean} True if the inverse is defined. If false is returned,
- * resultMat is not modified.
- */
- goog.vec.mat4f.invert = function(mat, resultMat) {
- var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];
- var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];
- var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];
- var m03 = mat[12], m13 = mat[13], m23 = mat[14], m33 = mat[15];
- var a0 = m00 * m11 - m10 * m01;
- var a1 = m00 * m21 - m20 * m01;
- var a2 = m00 * m31 - m30 * m01;
- var a3 = m10 * m21 - m20 * m11;
- var a4 = m10 * m31 - m30 * m11;
- var a5 = m20 * m31 - m30 * m21;
- var b0 = m02 * m13 - m12 * m03;
- var b1 = m02 * m23 - m22 * m03;
- var b2 = m02 * m33 - m32 * m03;
- var b3 = m12 * m23 - m22 * m13;
- var b4 = m12 * m33 - m32 * m13;
- var b5 = m22 * m33 - m32 * m23;
- var det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0;
- if (det == 0) {
- return false;
- }
- var idet = 1.0 / det;
- resultMat[0] = (m11 * b5 - m21 * b4 + m31 * b3) * idet;
- resultMat[1] = (-m10 * b5 + m20 * b4 - m30 * b3) * idet;
- resultMat[2] = (m13 * a5 - m23 * a4 + m33 * a3) * idet;
- resultMat[3] = (-m12 * a5 + m22 * a4 - m32 * a3) * idet;
- resultMat[4] = (-m01 * b5 + m21 * b2 - m31 * b1) * idet;
- resultMat[5] = (m00 * b5 - m20 * b2 + m30 * b1) * idet;
- resultMat[6] = (-m03 * a5 + m23 * a2 - m33 * a1) * idet;
- resultMat[7] = (m02 * a5 - m22 * a2 + m32 * a1) * idet;
- resultMat[8] = (m01 * b4 - m11 * b2 + m31 * b0) * idet;
- resultMat[9] = (-m00 * b4 + m10 * b2 - m30 * b0) * idet;
- resultMat[10] = (m03 * a4 - m13 * a2 + m33 * a0) * idet;
- resultMat[11] = (-m02 * a4 + m12 * a2 - m32 * a0) * idet;
- resultMat[12] = (-m01 * b3 + m11 * b1 - m21 * b0) * idet;
- resultMat[13] = (m00 * b3 - m10 * b1 + m20 * b0) * idet;
- resultMat[14] = (-m03 * a3 + m13 * a1 - m23 * a0) * idet;
- resultMat[15] = (m02 * a3 - m12 * a1 + m22 * a0) * idet;
- return true;
- };
- /**
- * Returns true if the components of mat0 are equal to the components of mat1.
- *
- * @param {!goog.vec.mat4f.Type} mat0 The first matrix.
- * @param {!goog.vec.mat4f.Type} mat1 The second matrix.
- * @return {boolean} True if the the two matrices are equivalent.
- */
- goog.vec.mat4f.equals = function(mat0, mat1) {
- return mat0.length == mat1.length && mat0[0] == mat1[0] &&
- mat0[1] == mat1[1] && mat0[2] == mat1[2] && mat0[3] == mat1[3] &&
- mat0[4] == mat1[4] && mat0[5] == mat1[5] && mat0[6] == mat1[6] &&
- mat0[7] == mat1[7] && mat0[8] == mat1[8] && mat0[9] == mat1[9] &&
- mat0[10] == mat1[10] && mat0[11] == mat1[11] && mat0[12] == mat1[12] &&
- mat0[13] == mat1[13] && mat0[14] == mat1[14] && mat0[15] == mat1[15];
- };
- /**
- * Transforms the given vector with the given matrix storing the resulting,
- * transformed vector into resultVec. The input vector is multiplied against the
- * upper 3x4 matrix omitting the projective component.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the transformation.
- * @param {!goog.vec.vec3f.Type} vec The 3 element vector to transform.
- * @param {!goog.vec.vec3f.Type} resultVec The 3 element vector to
- * receive the results (may be vec).
- * @return {!goog.vec.vec3f.Type} return resultVec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.multVec3 = function(mat, vec, resultVec) {
- var x = vec[0], y = vec[1], z = vec[2];
- resultVec[0] = x * mat[0] + y * mat[4] + z * mat[8] + mat[12];
- resultVec[1] = x * mat[1] + y * mat[5] + z * mat[9] + mat[13];
- resultVec[2] = x * mat[2] + y * mat[6] + z * mat[10] + mat[14];
- return resultVec;
- };
- /**
- * Transforms the given vector with the given matrix storing the resulting,
- * transformed vector into resultVec. The input vector is multiplied against the
- * upper 3x3 matrix omitting the projective component and translation
- * components.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the transformation.
- * @param {!goog.vec.vec3f.Type} vec The 3 element vector to transform.
- * @param {!goog.vec.vec3f.Type} resultVec The 3 element vector to
- * receive the results (may be vec).
- * @return {!goog.vec.vec3f.Type} return resultVec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.multVec3NoTranslate = function(mat, vec, resultVec) {
- var x = vec[0], y = vec[1], z = vec[2];
- resultVec[0] = x * mat[0] + y * mat[4] + z * mat[8];
- resultVec[1] = x * mat[1] + y * mat[5] + z * mat[9];
- resultVec[2] = x * mat[2] + y * mat[6] + z * mat[10];
- return resultVec;
- };
- /**
- * Transforms the given vector with the given matrix storing the resulting,
- * transformed vector into resultVec. The input vector is multiplied against the
- * full 4x4 matrix with the homogeneous divide applied to reduce the 4 element
- * vector to a 3 element vector.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the transformation.
- * @param {!goog.vec.vec3f.Type} vec The 3 element vector to transform.
- * @param {!goog.vec.vec3f.Type} resultVec The 3 element vector
- * to receive the results (may be vec).
- * @return {!goog.vec.vec3f.Type} return resultVec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.multVec3Projective = function(mat, vec, resultVec) {
- var x = vec[0], y = vec[1], z = vec[2];
- var invw = 1 / (x * mat[3] + y * mat[7] + z * mat[11] + mat[15]);
- resultVec[0] = (x * mat[0] + y * mat[4] + z * mat[8] + mat[12]) * invw;
- resultVec[1] = (x * mat[1] + y * mat[5] + z * mat[9] + mat[13]) * invw;
- resultVec[2] = (x * mat[2] + y * mat[6] + z * mat[10] + mat[14]) * invw;
- return resultVec;
- };
- /**
- * Transforms the given vector with the given matrix storing the resulting,
- * transformed vector into resultVec.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix supplying the transformation.
- * @param {!goog.vec.vec4f.Type} vec The vector to transform.
- * @param {!goog.vec.vec4f.Type} resultVec The vector to
- * receive the results (may be vec).
- * @return {!goog.vec.vec4f.Type} return resultVec so that operations can be
- * chained together.
- */
- goog.vec.mat4f.multVec4 = function(mat, vec, resultVec) {
- var x = vec[0], y = vec[1], z = vec[2], w = vec[3];
- resultVec[0] = x * mat[0] + y * mat[4] + z * mat[8] + w * mat[12];
- resultVec[1] = x * mat[1] + y * mat[5] + z * mat[9] + w * mat[13];
- resultVec[2] = x * mat[2] + y * mat[6] + z * mat[10] + w * mat[14];
- resultVec[3] = x * mat[3] + y * mat[7] + z * mat[11] + w * mat[15];
- return resultVec;
- };
- /**
- * Makes the given 4x4 matrix a translation matrix with x, y and z
- * translation factors.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} x The translation along the x axis.
- * @param {number} y The translation along the y axis.
- * @param {number} z The translation along the z axis.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeTranslate = function(mat, x, y, z) {
- mat[0] = 1;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = 1;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = 1;
- mat[11] = 0;
- mat[12] = x;
- mat[13] = y;
- mat[14] = z;
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix as a scale matrix with x, y and z scale factors.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} x The scale along the x axis.
- * @param {number} y The scale along the y axis.
- * @param {number} z The scale along the z axis.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeScale = function(mat, x, y, z) {
- mat[0] = x;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = y;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = z;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix a rotation matrix with the given rotation
- * angle about the axis defined by the vector (ax, ay, az).
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The rotation angle in radians.
- * @param {number} ax The x component of the rotation axis.
- * @param {number} ay The y component of the rotation axis.
- * @param {number} az The z component of the rotation axis.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotate = function(mat, angle, ax, ay, az) {
- var c = Math.cos(angle);
- var d = 1 - c;
- var s = Math.sin(angle);
- mat[0] = ax * ax * d + c;
- mat[1] = ax * ay * d + az * s;
- mat[2] = ax * az * d - ay * s;
- mat[3] = 0;
- mat[4] = ax * ay * d - az * s;
- mat[5] = ay * ay * d + c;
- mat[6] = ay * az * d + ax * s;
- mat[7] = 0;
- mat[8] = ax * az * d + ay * s;
- mat[9] = ay * az * d - ax * s;
- mat[10] = az * az * d + c;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix a rotation matrix with the given rotation
- * angle about the X axis.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The rotation angle in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotateX = function(mat, angle) {
- var c = Math.cos(angle);
- var s = Math.sin(angle);
- mat[0] = 1;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = c;
- mat[6] = s;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = -s;
- mat[10] = c;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix a rotation matrix with the given rotation
- * angle about the Y axis.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The rotation angle in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotateY = function(mat, angle) {
- var c = Math.cos(angle);
- var s = Math.sin(angle);
- mat[0] = c;
- mat[1] = 0;
- mat[2] = -s;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = 1;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = s;
- mat[9] = 0;
- mat[10] = c;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix a rotation matrix with the given rotation
- * angle about the Z axis.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The rotation angle in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotateZ = function(mat, angle) {
- var c = Math.cos(angle);
- var s = Math.sin(angle);
- mat[0] = c;
- mat[1] = s;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = -s;
- mat[5] = c;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = 1;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Creates a matrix from a quaternion rotation and vector translation.
- *
- * This is a specialization of makeRotationTranslationScaleOrigin.
- *
- * This is equivalent to, but faster than:
- * goog.vec.mat4f.makeIdentity(m);
- * goog.vec.mat4f.translate(m, tx, ty, tz);
- * goog.vec.mat4f.rotate(m, theta, rx, ry, rz);
- * and:
- * goog.vec.Quaternion.toRotationMatrix4(rotation, mat);
- * mat[12] = translation[0];
- * mat[13] = translation[1];
- * mat[14] = translation[2];
- * See http://jsperf.com/goog-vec-makerotationtranslation2 .
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {!goog.vec.Quaternion.AnyType} rotation The quaternion rotation.
- * Note: this quaternion is assumed to already be normalized.
- * @param {!goog.vec.vec3f.Type} translation The vector translation.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotationTranslation = function(mat, rotation, translation) {
- // Quaternion math
- var x = rotation[0], y = rotation[1], z = rotation[2], w = rotation[3];
- var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;
- var xx = x * x2;
- var xy = x * y2;
- var xz = x * z2;
- var yy = y * y2;
- var yz = y * z2;
- var zz = z * z2;
- var wx = w * x2;
- var wy = w * y2;
- var wz = w * z2;
- mat[0] = 1 - (yy + zz);
- mat[1] = xy + wz;
- mat[2] = xz - wy;
- mat[3] = 0;
- mat[4] = xy - wz;
- mat[5] = 1 - (xx + zz);
- mat[6] = yz + wx;
- mat[7] = 0;
- mat[8] = xz + wy;
- mat[9] = yz - wx;
- mat[10] = 1 - (xx + yy);
- mat[11] = 0;
- mat[12] = translation[0];
- mat[13] = translation[1];
- mat[14] = translation[2];
- mat[15] = 1;
- return mat;
- };
- /**
- * Creates a matrix from a quaternion rotation, vector translation, and
- * vector scale.
- *
- * This is a specialization of makeRotationTranslationScaleOrigin.
- *
- * This is equivalent to, but faster than:
- * goog.vec.mat4f.makeIdentity(m);
- * goog.vec.mat4f.translate(m, tx, ty, tz);
- * goog.vec.mat4f.rotate(m, theta, rx, ry, rz);
- * goog.vec.mat4f.scale(m, sx, sy, sz);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {!goog.vec.Quaternion.AnyType} rotation The quaternion rotation.
- * Note: this quaternion is assumed to already be normalized.
- * @param {!goog.vec.vec3f.Type} translation The vector translation.
- * @param {!goog.vec.vec3f.Type} scale The vector scale.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotationTranslationScale = function(
- mat, rotation, translation, scale) {
- // Quaternion math
- var x = rotation[0], y = rotation[1], z = rotation[2], w = rotation[3];
- var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;
- var xx = x * x2;
- var xy = x * y2;
- var xz = x * z2;
- var yy = y * y2;
- var yz = y * z2;
- var zz = z * z2;
- var wx = w * x2;
- var wy = w * y2;
- var wz = w * z2;
- var sx = scale[0];
- var sy = scale[1];
- var sz = scale[2];
- mat[0] = (1 - (yy + zz)) * sx;
- mat[1] = (xy + wz) * sx;
- mat[2] = (xz - wy) * sx;
- mat[3] = 0;
- mat[4] = (xy - wz) * sy;
- mat[5] = (1 - (xx + zz)) * sy;
- mat[6] = (yz + wx) * sy;
- mat[7] = 0;
- mat[8] = (xz + wy) * sz;
- mat[9] = (yz - wx) * sz;
- mat[10] = (1 - (xx + yy)) * sz;
- mat[11] = 0;
- mat[12] = translation[0];
- mat[13] = translation[1];
- mat[14] = translation[2];
- mat[15] = 1;
- return mat;
- };
- /**
- * Creates a matrix from a quaternion rotation, vector translation, and
- * vector scale, rotating and scaling about the given origin.
- *
- * This is equivalent to, but faster than:
- * goog.vec.mat4f.makeIdentity(m);
- * goog.vec.mat4f.translate(m, tx, ty, tz);
- * goog.vec.mat4f.translate(m, ox, oy, oz);
- * goog.vec.mat4f.rotate(m, theta, rx, ry, rz);
- * goog.vec.mat4f.scale(m, sx, sy, sz);
- * goog.vec.mat4f.translate(m, -ox, -oy, -oz);
- * See http://jsperf.com/glmatrix-matrix-variant-test/3 for performance
- * results of a similar function in the glmatrix library.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {!goog.vec.Quaternion.AnyType} rotation The quaternion rotation.
- * Note: this quaternion is assumed to already be normalized.
- * @param {!goog.vec.vec3f.Type} translation The vector translation.
- * @param {!goog.vec.vec3f.Type} scale The vector scale.
- * @param {!goog.vec.vec3f.Type} origin The origin about which to scale and
- * rotate.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeRotationTranslationScaleOrigin = function(
- mat, rotation, translation, scale, origin) {
- // Quaternion math
- var x = rotation[0], y = rotation[1], z = rotation[2], w = rotation[3];
- var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;
- var xx = x * x2;
- var xy = x * y2;
- var xz = x * z2;
- var yy = y * y2;
- var yz = y * z2;
- var zz = z * z2;
- var wx = w * x2;
- var wy = w * y2;
- var wz = w * z2;
- var sx = scale[0];
- var sy = scale[1];
- var sz = scale[2];
- var ox = origin[0];
- var oy = origin[1];
- var oz = origin[2];
- mat[0] = (1 - (yy + zz)) * sx;
- mat[1] = (xy + wz) * sx;
- mat[2] = (xz - wy) * sx;
- mat[3] = 0;
- mat[4] = (xy - wz) * sy;
- mat[5] = (1 - (xx + zz)) * sy;
- mat[6] = (yz + wx) * sy;
- mat[7] = 0;
- mat[8] = (xz + wy) * sz;
- mat[9] = (yz - wx) * sz;
- mat[10] = (1 - (xx + yy)) * sz;
- mat[11] = 0;
- mat[12] = translation[0] + ox - (mat[0] * ox + mat[4] * oy + mat[8] * oz);
- mat[13] = translation[1] + oy - (mat[1] * ox + mat[5] * oy + mat[9] * oz);
- mat[14] = translation[2] + oz - (mat[2] * ox + mat[6] * oy + mat[10] * oz);
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix a perspective projection matrix.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} left The coordinate of the left clipping plane.
- * @param {number} right The coordinate of the right clipping plane.
- * @param {number} bottom The coordinate of the bottom clipping plane.
- * @param {number} top The coordinate of the top clipping plane.
- * @param {number} near The distance to the near clipping plane.
- * @param {number} far The distance to the far clipping plane.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeFrustum = function(
- mat, left, right, bottom, top, near, far) {
- var x = (2 * near) / (right - left);
- var y = (2 * near) / (top - bottom);
- var a = (right + left) / (right - left);
- var b = (top + bottom) / (top - bottom);
- var c = -(far + near) / (far - near);
- var d = -(2 * far * near) / (far - near);
- mat[0] = x;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = y;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = a;
- mat[9] = b;
- mat[10] = c;
- mat[11] = -1;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = d;
- mat[15] = 0;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix perspective projection matrix given a
- * field of view and aspect ratio.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} fovy The field of view along the y (vertical) axis in
- * radians.
- * @param {number} aspect The x (width) to y (height) aspect ratio.
- * @param {number} near The distance to the near clipping plane.
- * @param {number} far The distance to the far clipping plane.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makePerspective = function(mat, fovy, aspect, near, far) {
- var angle = fovy / 2;
- var dz = far - near;
- var sinAngle = Math.sin(angle);
- if (dz == 0 || sinAngle == 0 || aspect == 0) {
- return mat;
- }
- var cot = Math.cos(angle) / sinAngle;
- mat[0] = cot / aspect;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = cot;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = -(far + near) / dz;
- mat[11] = -1;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = -(2 * near * far) / dz;
- mat[15] = 0;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix an orthographic projection matrix.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} left The coordinate of the left clipping plane.
- * @param {number} right The coordinate of the right clipping plane.
- * @param {number} bottom The coordinate of the bottom clipping plane.
- * @param {number} top The coordinate of the top clipping plane.
- * @param {number} near The distance to the near clipping plane.
- * @param {number} far The distance to the far clipping plane.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeOrtho = function(mat, left, right, bottom, top, near, far) {
- var x = 2 / (right - left);
- var y = 2 / (top - bottom);
- var z = -2 / (far - near);
- var a = -(right + left) / (right - left);
- var b = -(top + bottom) / (top - bottom);
- var c = -(far + near) / (far - near);
- mat[0] = x;
- mat[1] = 0;
- mat[2] = 0;
- mat[3] = 0;
- mat[4] = 0;
- mat[5] = y;
- mat[6] = 0;
- mat[7] = 0;
- mat[8] = 0;
- mat[9] = 0;
- mat[10] = z;
- mat[11] = 0;
- mat[12] = a;
- mat[13] = b;
- mat[14] = c;
- mat[15] = 1;
- return mat;
- };
- /**
- * Makes the given 4x4 matrix a modelview matrix of a camera so that
- * the camera is 'looking at' the given center point.
- *
- * Note that unlike most other goog.vec functions where we inline
- * everything, this function does not inline various goog.vec
- * functions. This makes the code more readable, but somewhat
- * less efficient.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {!goog.vec.vec3f.Type} eyePt The position of the eye point
- * (camera origin).
- * @param {!goog.vec.vec3f.Type} centerPt The point to aim the camera at.
- * @param {!goog.vec.vec3f.Type} worldUpVec The vector that identifies
- * the up direction for the camera.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeLookAt = function(mat, eyePt, centerPt, worldUpVec) {
- // Compute the direction vector from the eye point to the center point and
- // normalize.
- var fwdVec = goog.vec.mat4f.tmpvec4f_[0];
- goog.vec.vec3f.subtract(centerPt, eyePt, fwdVec);
- goog.vec.vec3f.normalize(fwdVec, fwdVec);
- fwdVec[3] = 0;
- // Compute the side vector from the forward vector and the input up vector.
- var sideVec = goog.vec.mat4f.tmpvec4f_[1];
- goog.vec.vec3f.cross(fwdVec, worldUpVec, sideVec);
- goog.vec.vec3f.normalize(sideVec, sideVec);
- sideVec[3] = 0;
- // Now the up vector to form the orthonormal basis.
- var upVec = goog.vec.mat4f.tmpvec4f_[2];
- goog.vec.vec3f.cross(sideVec, fwdVec, upVec);
- goog.vec.vec3f.normalize(upVec, upVec);
- upVec[3] = 0;
- // Update the view matrix with the new orthonormal basis and position the
- // camera at the given eye point.
- goog.vec.vec3f.negate(fwdVec, fwdVec);
- goog.vec.mat4f.setRow(mat, 0, sideVec);
- goog.vec.mat4f.setRow(mat, 1, upVec);
- goog.vec.mat4f.setRow(mat, 2, fwdVec);
- goog.vec.mat4f.setRowValues(mat, 3, 0, 0, 0, 1);
- goog.vec.mat4f.translate(mat, -eyePt[0], -eyePt[1], -eyePt[2]);
- return mat;
- };
- /**
- * Decomposes a matrix into the lookAt vectors eyePt, fwdVec and worldUpVec.
- * The matrix represents the modelview matrix of a camera. It is the inverse
- * of lookAt except for the output of the fwdVec instead of centerPt.
- * The centerPt itself cannot be recovered from a modelview matrix.
- *
- * Note that unlike most other goog.vec functions where we inline
- * everything, this function does not inline various goog.vec
- * functions. This makes the code more readable, but somewhat
- * less efficient.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {!goog.vec.vec3f.Type} eyePt The position of the eye point
- * (camera origin).
- * @param {!goog.vec.vec3f.Type} fwdVec The vector describing where
- * the camera points to.
- * @param {!goog.vec.vec3f.Type} worldUpVec The vector that
- * identifies the up direction for the camera.
- * @return {boolean} True if the method succeeds, false otherwise.
- * The method can only fail if the inverse of viewMatrix is not defined.
- */
- goog.vec.mat4f.toLookAt = function(mat, eyePt, fwdVec, worldUpVec) {
- // Get eye of the camera.
- var matInverse = goog.vec.mat4f.tmpmat4f_[0];
- if (!goog.vec.mat4f.invert(mat, matInverse)) {
- // The input matrix does not have a valid inverse.
- return false;
- }
- if (eyePt) {
- eyePt[0] = matInverse[12];
- eyePt[1] = matInverse[13];
- eyePt[2] = matInverse[14];
- }
- // Get forward vector from the definition of lookAt.
- if (fwdVec || worldUpVec) {
- if (!fwdVec) {
- fwdVec = goog.vec.mat4f.tmpvec3f_[0];
- }
- fwdVec[0] = -mat[2];
- fwdVec[1] = -mat[6];
- fwdVec[2] = -mat[10];
- // Normalize forward vector.
- goog.vec.vec3f.normalize(fwdVec, fwdVec);
- }
- if (worldUpVec) {
- // Get side vector from the definition of gluLookAt.
- var side = goog.vec.mat4f.tmpvec3f_[1];
- side[0] = mat[0];
- side[1] = mat[4];
- side[2] = mat[8];
- // Compute up vector as a up = side x forward.
- goog.vec.vec3f.cross(side, fwdVec, worldUpVec);
- // Normalize up vector.
- goog.vec.vec3f.normalize(worldUpVec, worldUpVec);
- }
- return true;
- };
- /**
- * Makes the given 4x4 matrix a rotation matrix given Euler angles using
- * the ZXZ convention.
- * Given the euler angles [theta1, theta2, theta3], the rotation is defined as
- * rotation = rotation_z(theta1) * rotation_x(theta2) * rotation_z(theta3),
- * with theta1 in [0, 2 * pi], theta2 in [0, pi] and theta3 in [0, 2 * pi].
- * rotation_x(theta) means rotation around the X axis of theta radians,
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} theta1 The angle of rotation around the Z axis in radians.
- * @param {number} theta2 The angle of rotation around the X axis in radians.
- * @param {number} theta3 The angle of rotation around the Z axis in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.makeEulerZXZ = function(mat, theta1, theta2, theta3) {
- var c1 = Math.cos(theta1);
- var s1 = Math.sin(theta1);
- var c2 = Math.cos(theta2);
- var s2 = Math.sin(theta2);
- var c3 = Math.cos(theta3);
- var s3 = Math.sin(theta3);
- mat[0] = c1 * c3 - c2 * s1 * s3;
- mat[1] = c2 * c1 * s3 + c3 * s1;
- mat[2] = s3 * s2;
- mat[3] = 0;
- mat[4] = -c1 * s3 - c3 * c2 * s1;
- mat[5] = c1 * c2 * c3 - s1 * s3;
- mat[6] = c3 * s2;
- mat[7] = 0;
- mat[8] = s2 * s1;
- mat[9] = -c1 * s2;
- mat[10] = c2;
- mat[11] = 0;
- mat[12] = 0;
- mat[13] = 0;
- mat[14] = 0;
- mat[15] = 1;
- return mat;
- };
- /**
- * Decomposes a rotation matrix into Euler angles using the ZXZ convention so
- * that rotation = rotation_z(theta1) * rotation_x(theta2) * rotation_z(theta3),
- * with theta1 in [0, 2 * pi], theta2 in [0, pi] and theta3 in [0, 2 * pi].
- * rotation_x(theta) means rotation around the X axis of theta radians.
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {!goog.vec.vec3f.Type} euler The ZXZ Euler angles in
- * radians as [theta1, theta2, theta3].
- * @param {boolean=} opt_theta2IsNegative Whether theta2 is in [-pi, 0] instead
- * of the default [0, pi].
- * @return {!goog.vec.vec4f.Type} return euler so that operations can be
- * chained together.
- */
- goog.vec.mat4f.toEulerZXZ = function(mat, euler, opt_theta2IsNegative) {
- // There is an ambiguity in the sign of sinTheta2 because of the sqrt.
- var sinTheta2 = Math.sqrt(mat[2] * mat[2] + mat[6] * mat[6]);
- // By default we explicitely constrain theta2 to be in [0, pi],
- // so sinTheta2 is always positive. We can change the behavior and specify
- // theta2 to be negative in [-pi, 0] with opt_Theta2IsNegative.
- var signTheta2 = opt_theta2IsNegative ? -1 : 1;
- if (sinTheta2 > goog.vec.EPSILON) {
- euler[2] = Math.atan2(mat[2] * signTheta2, mat[6] * signTheta2);
- euler[1] = Math.atan2(sinTheta2 * signTheta2, mat[10]);
- euler[0] = Math.atan2(mat[8] * signTheta2, -mat[9] * signTheta2);
- } else {
- // There is also an arbitrary choice for theta1 = 0 or theta2 = 0 here.
- // We assume theta1 = 0 as some applications do not allow the camera to roll
- // (i.e. have theta1 != 0).
- euler[0] = 0;
- euler[1] = Math.atan2(sinTheta2 * signTheta2, mat[10]);
- euler[2] = Math.atan2(mat[1], mat[0]);
- }
- // Atan2 outputs angles in [-pi, pi] so we bring them back to [0, 2 * pi].
- euler[0] = (euler[0] + Math.PI * 2) % (Math.PI * 2);
- euler[2] = (euler[2] + Math.PI * 2) % (Math.PI * 2);
- // For theta2 we want the angle to be in [0, pi] or [-pi, 0] depending on
- // signTheta2.
- euler[1] =
- ((euler[1] * signTheta2 + Math.PI * 2) % (Math.PI * 2)) * signTheta2;
- return euler;
- };
- /**
- * Translates the given matrix by x,y,z. Equvialent to:
- * goog.vec.mat4f.multMat(
- * mat,
- * goog.vec.mat4f.makeTranslate(goog.vec.mat4f.create(), x, y, z),
- * mat);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} x The translation along the x axis.
- * @param {number} y The translation along the y axis.
- * @param {number} z The translation along the z axis.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.translate = function(mat, x, y, z) {
- mat[12] += mat[0] * x + mat[4] * y + mat[8] * z;
- mat[13] += mat[1] * x + mat[5] * y + mat[9] * z;
- mat[14] += mat[2] * x + mat[6] * y + mat[10] * z;
- mat[15] += mat[3] * x + mat[7] * y + mat[11] * z;
- return mat;
- };
- /**
- * Scales the given matrix by x,y,z. Equivalent to:
- * goog.vec.mat4f.multMat(
- * mat,
- * goog.vec.mat4f.makeScale(goog.vec.mat4f.create(), x, y, z),
- * mat);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} x The x scale factor.
- * @param {number} y The y scale factor.
- * @param {number} z The z scale factor.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.scale = function(mat, x, y, z) {
- mat[0] = mat[0] * x;
- mat[1] = mat[1] * x;
- mat[2] = mat[2] * x;
- mat[3] = mat[3] * x;
- mat[4] = mat[4] * y;
- mat[5] = mat[5] * y;
- mat[6] = mat[6] * y;
- mat[7] = mat[7] * y;
- mat[8] = mat[8] * z;
- mat[9] = mat[9] * z;
- mat[10] = mat[10] * z;
- mat[11] = mat[11] * z;
- mat[12] = mat[12];
- mat[13] = mat[13];
- mat[14] = mat[14];
- mat[15] = mat[15];
- return mat;
- };
- /**
- * Rotate the given matrix by angle about the x,y,z axis. Equivalent to:
- * goog.vec.mat4f.multMat(
- * mat,
- * goog.vec.mat4f.makeRotate(goog.vec.mat4f.create(), angle, x, y, z),
- * mat);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The angle in radians.
- * @param {number} x The x component of the rotation axis.
- * @param {number} y The y component of the rotation axis.
- * @param {number} z The z component of the rotation axis.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.rotate = function(mat, angle, x, y, z) {
- var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];
- var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];
- var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];
- var cosAngle = Math.cos(angle);
- var sinAngle = Math.sin(angle);
- var diffCosAngle = 1 - cosAngle;
- var r00 = x * x * diffCosAngle + cosAngle;
- var r10 = x * y * diffCosAngle + z * sinAngle;
- var r20 = x * z * diffCosAngle - y * sinAngle;
- var r01 = x * y * diffCosAngle - z * sinAngle;
- var r11 = y * y * diffCosAngle + cosAngle;
- var r21 = y * z * diffCosAngle + x * sinAngle;
- var r02 = x * z * diffCosAngle + y * sinAngle;
- var r12 = y * z * diffCosAngle - x * sinAngle;
- var r22 = z * z * diffCosAngle + cosAngle;
- mat[0] = m00 * r00 + m01 * r10 + m02 * r20;
- mat[1] = m10 * r00 + m11 * r10 + m12 * r20;
- mat[2] = m20 * r00 + m21 * r10 + m22 * r20;
- mat[3] = m30 * r00 + m31 * r10 + m32 * r20;
- mat[4] = m00 * r01 + m01 * r11 + m02 * r21;
- mat[5] = m10 * r01 + m11 * r11 + m12 * r21;
- mat[6] = m20 * r01 + m21 * r11 + m22 * r21;
- mat[7] = m30 * r01 + m31 * r11 + m32 * r21;
- mat[8] = m00 * r02 + m01 * r12 + m02 * r22;
- mat[9] = m10 * r02 + m11 * r12 + m12 * r22;
- mat[10] = m20 * r02 + m21 * r12 + m22 * r22;
- mat[11] = m30 * r02 + m31 * r12 + m32 * r22;
- return mat;
- };
- /**
- * Rotate the given matrix by angle about the x axis. Equivalent to:
- * goog.vec.mat4f.multMat(
- * mat,
- * goog.vec.mat4f.makeRotateX(goog.vec.mat4f.create(), angle),
- * mat);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The angle in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.rotateX = function(mat, angle) {
- var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];
- var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];
- var c = Math.cos(angle);
- var s = Math.sin(angle);
- mat[4] = m01 * c + m02 * s;
- mat[5] = m11 * c + m12 * s;
- mat[6] = m21 * c + m22 * s;
- mat[7] = m31 * c + m32 * s;
- mat[8] = m01 * -s + m02 * c;
- mat[9] = m11 * -s + m12 * c;
- mat[10] = m21 * -s + m22 * c;
- mat[11] = m31 * -s + m32 * c;
- return mat;
- };
- /**
- * Rotate the given matrix by angle about the y axis. Equivalent to:
- * goog.vec.mat4f.multMat(
- * mat,
- * goog.vec.mat4f.makeRotateY(goog.vec.mat4f.create(), angle),
- * mat);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The angle in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.rotateY = function(mat, angle) {
- var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];
- var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];
- var c = Math.cos(angle);
- var s = Math.sin(angle);
- mat[0] = m00 * c + m02 * -s;
- mat[1] = m10 * c + m12 * -s;
- mat[2] = m20 * c + m22 * -s;
- mat[3] = m30 * c + m32 * -s;
- mat[8] = m00 * s + m02 * c;
- mat[9] = m10 * s + m12 * c;
- mat[10] = m20 * s + m22 * c;
- mat[11] = m30 * s + m32 * c;
- return mat;
- };
- /**
- * Rotate the given matrix by angle about the z axis. Equivalent to:
- * goog.vec.mat4f.multMat(
- * mat,
- * goog.vec.mat4f.makeRotateZ(goog.vec.mat4f.create(), angle),
- * mat);
- *
- * @param {!goog.vec.mat4f.Type} mat The matrix.
- * @param {number} angle The angle in radians.
- * @return {!goog.vec.mat4f.Type} return mat so that operations can be
- * chained.
- */
- goog.vec.mat4f.rotateZ = function(mat, angle) {
- var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];
- var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];
- var c = Math.cos(angle);
- var s = Math.sin(angle);
- mat[0] = m00 * c + m01 * s;
- mat[1] = m10 * c + m11 * s;
- mat[2] = m20 * c + m21 * s;
- mat[3] = m30 * c + m31 * s;
- mat[4] = m00 * -s + m01 * c;
- mat[5] = m10 * -s + m11 * c;
- mat[6] = m20 * -s + m21 * c;
- mat[7] = m30 * -s + m31 * c;
- return mat;
- };
- /**
- * Retrieves the translation component of the transformation matrix.
- *
- * @param {!goog.vec.mat4f.Type} mat The transformation matrix.
- * @param {!goog.vec.vec3f.Type} translation The vector for storing the
- * result.
- * @return {!goog.vec.vec3f.Type} return translation so that operations can be
- * chained.
- */
- goog.vec.mat4f.getTranslation = function(mat, translation) {
- translation[0] = mat[12];
- translation[1] = mat[13];
- translation[2] = mat[14];
- return translation;
- };
- /**
- * @type {Array<goog.vec.vec3f.Type>}
- * @private
- */
- goog.vec.mat4f.tmpvec3f_ = [goog.vec.vec3f.create(), goog.vec.vec3f.create()];
- /**
- * @type {Array<goog.vec.vec4f.Type>}
- * @private
- */
- goog.vec.mat4f.tmpvec4f_ =
- [goog.vec.vec4f.create(), goog.vec.vec4f.create(), goog.vec.vec4f.create()];
- /**
- * @type {Array<goog.vec.mat4f.Type>}
- * @private
- */
- goog.vec.mat4f.tmpmat4f_ = [goog.vec.mat4f.create()];
|