123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729 |
- /**
- * @license
- * Copyright The Closure Library Authors.
- * SPDX-License-Identifier: Apache-2.0
- */
- /**
- * @fileoverview Implements quaternions and their conversion functions. In this
- * implementation, quaternions are represented as 4 element vectors with the
- * first 3 elements holding the imaginary components and the 4th element holding
- * the real component.
- */
- goog.provide('goog.vec.Quaternion');
- goog.provide('goog.vec.Quaternion.AnyType');
- goog.require('goog.vec');
- goog.require('goog.vec.Vec3');
- goog.require('goog.vec.Vec4');
- /** @typedef {!goog.vec.Float32} */ goog.vec.Quaternion.Float32;
- /** @typedef {!goog.vec.Float64} */ goog.vec.Quaternion.Float64;
- /** @typedef {!goog.vec.Number} */ goog.vec.Quaternion.Number;
- /** @typedef {!goog.vec.AnyType} */ goog.vec.Quaternion.AnyType;
- /**
- * Creates a Float32 quaternion, initialized to zero.
- *
- * @return {!goog.vec.Quaternion.Float32} The new quaternion.
- */
- goog.vec.Quaternion.createFloat32 = goog.vec.Vec4.createFloat32;
- /**
- * Creates a Float64 quaternion, initialized to zero.
- *
- * @return {!goog.vec.Quaternion.Float64} The new quaternion.
- */
- goog.vec.Quaternion.createFloat64 = goog.vec.Vec4.createFloat64;
- /**
- * Creates a Number quaternion, initialized to zero.
- *
- * @return {goog.vec.Quaternion.Number} The new quaternion.
- */
- goog.vec.Quaternion.createNumber = goog.vec.Vec4.createNumber;
- /**
- * Creates a new Float32 quaternion initialized with the values from the
- * supplied array.
- *
- * @param {!goog.vec.AnyType} vec The source 4 element array.
- * @return {!goog.vec.Quaternion.Float32} The new quaternion.
- */
- goog.vec.Quaternion.createFloat32FromArray =
- goog.vec.Vec4.createFloat32FromArray;
- /**
- * Creates a new Float64 quaternion initialized with the values from the
- * supplied array.
- *
- * @param {!goog.vec.AnyType} vec The source 4 element array.
- * @return {!goog.vec.Quaternion.Float64} The new quaternion.
- */
- goog.vec.Quaternion.createFloat64FromArray =
- goog.vec.Vec4.createFloat64FromArray;
- /**
- * Creates a new Float32 quaternion initialized with the supplied values.
- *
- * @param {number} v0 The value for element at index 0.
- * @param {number} v1 The value for element at index 1.
- * @param {number} v2 The value for element at index 2.
- * @param {number} v3 The value for element at index 3.
- * @return {!goog.vec.Quaternion.Float32} The new quaternion.
- */
- goog.vec.Quaternion.createFloat32FromValues =
- goog.vec.Vec4.createFloat32FromValues;
- /**
- * Creates a new Float64 quaternion initialized with the supplied values.
- *
- * @param {number} v0 The value for element at index 0.
- * @param {number} v1 The value for element at index 1.
- * @param {number} v2 The value for element at index 2.
- * @param {number} v3 The value for element at index 3.
- * @return {!goog.vec.Quaternion.Float64} The new quaternion.
- */
- goog.vec.Quaternion.createFloat64FromValues =
- goog.vec.Vec4.createFloat64FromValues;
- /**
- * Creates a clone of the given Float32 quaternion.
- *
- * @param {!goog.vec.Quaternion.Float32} q The source quaternion.
- * @return {!goog.vec.Quaternion.Float32} The new quaternion.
- */
- goog.vec.Quaternion.cloneFloat32 = goog.vec.Vec4.cloneFloat32;
- /**
- * Creates a clone of the given Float64 quaternion.
- *
- * @param {!goog.vec.Quaternion.Float64} q The source quaternion.
- * @return {!goog.vec.Quaternion.Float64} The new quaternion.
- */
- goog.vec.Quaternion.cloneFloat64 = goog.vec.Vec4.cloneFloat64;
- /**
- * Creates a Float32 quaternion, initialized to the identity.
- *
- * @return {!goog.vec.Quaternion.Float32} The new quaternion.
- */
- goog.vec.Quaternion.createIdentityFloat32 = function() {
- var quat = goog.vec.Quaternion.createFloat32();
- goog.vec.Quaternion.makeIdentity(quat);
- return quat;
- };
- /**
- * Creates a Float64 quaternion, initialized to the identity.
- *
- * @return {!goog.vec.Quaternion.Float64} The new quaternion.
- */
- goog.vec.Quaternion.createIdentityFloat64 = function() {
- var quat = goog.vec.Quaternion.createFloat64();
- goog.vec.Quaternion.makeIdentity(quat);
- return quat;
- };
- /**
- * Initializes the quaternion with the given values.
- *
- * @param {!goog.vec.Quaternion.AnyType} q The quaternion to receive
- * the values.
- * @param {number} v0 The value for element at index 0.
- * @param {number} v1 The value for element at index 1.
- * @param {number} v2 The value for element at index 2.
- * @param {number} v3 The value for element at index 3.
- * @return {!goog.vec.Vec4.AnyType} return q so that operations can be
- * chained together.
- */
- goog.vec.Quaternion.setFromValues = goog.vec.Vec4.setFromValues;
- /**
- * Initializes the quaternion with the given array of values.
- *
- * @param {!goog.vec.Quaternion.AnyType} q The quaternion to receive
- * the values.
- * @param {!goog.vec.AnyType} values The array of values.
- * @return {!goog.vec.Quaternion.AnyType} return q so that operations can be
- * chained together.
- */
- goog.vec.Quaternion.setFromArray = goog.vec.Vec4.setFromArray;
- /**
- * Adds the two quaternions.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The first addend.
- * @param {!goog.vec.Quaternion.AnyType} quat1 The second addend.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result. May be quat0 or quat1.
- */
- goog.vec.Quaternion.add = goog.vec.Vec4.add;
- /**
- * Negates a quaternion, storing the result into resultQuat.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion to negate.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result. May be quat0.
- */
- goog.vec.Quaternion.negate = goog.vec.Vec4.negate;
- /**
- * Multiplies each component of quat0 with scalar storing the product into
- * resultVec.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The source quaternion.
- * @param {number} scalar The value to multiply with each component of quat0.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result. May be quat0.
- */
- goog.vec.Quaternion.scale = goog.vec.Vec4.scale;
- /**
- * Returns the square magnitude of the given quaternion.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion.
- * @return {number} The magnitude of the quaternion.
- */
- goog.vec.Quaternion.magnitudeSquared = goog.vec.Vec4.magnitudeSquared;
- /**
- * Returns the magnitude of the given quaternion.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion.
- * @return {number} The magnitude of the quaternion.
- */
- goog.vec.Quaternion.magnitude = goog.vec.Vec4.magnitude;
- /**
- * Normalizes the given quaternion storing the result into resultVec.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion to
- * normalize.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result. May be quat0.
- */
- goog.vec.Quaternion.normalize = goog.vec.Vec4.normalize;
- /**
- * Computes the dot (scalar) product of two quaternions.
- *
- * @param {!goog.vec.Quaternion.AnyType} q0 The first quaternion.
- * @param {!goog.vec.Quaternion.AnyType} q1 The second quaternion.
- * @return {number} The scalar product.
- */
- goog.vec.Quaternion.dot = goog.vec.Vec4.dot;
- /**
- * Computes the inverse of the quaternion in quat, storing the result into
- * resultQuat.
- *
- * If the quaternion is already normalized, goog.vec.Quaternion.conjugate
- * is faster than this function and produces the same result.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The quaternion to invert.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to receive
- * the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.invert = function(quat, resultQuat) {
- var a0 = quat[0], a1 = quat[1], a2 = quat[2], a3 = quat[3];
- var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
- var invDot = dot ? 1.0 / dot : 0;
- resultQuat[0] = -a0 * invDot;
- resultQuat[1] = -a1 * invDot;
- resultQuat[2] = -a2 * invDot;
- resultQuat[3] = a3 * invDot;
- return resultQuat;
- };
- /**
- * Computes the conjugate of the quaternion in quat, storing the result into
- * resultQuat.
- *
- * If the quaternion is normalized already, this function is faster than
- * goog.Quaternion.inverse and produces the same result.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The source quaternion.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.conjugate = function(quat, resultQuat) {
- resultQuat[0] = -quat[0];
- resultQuat[1] = -quat[1];
- resultQuat[2] = -quat[2];
- resultQuat[3] = quat[3];
- return resultQuat;
- };
- /**
- * Concatenates the two quaternions storing the result into resultQuat.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat0 The first quaternion.
- * @param {!goog.vec.Quaternion.AnyType} quat1 The second quaternion.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.concat = function(quat0, quat1, resultQuat) {
- var x0 = quat0[0], y0 = quat0[1], z0 = quat0[2], w0 = quat0[3];
- var x1 = quat1[0], y1 = quat1[1], z1 = quat1[2], w1 = quat1[3];
- resultQuat[0] = w0 * x1 + x0 * w1 + y0 * z1 - z0 * y1;
- resultQuat[1] = w0 * y1 - x0 * z1 + y0 * w1 + z0 * x1;
- resultQuat[2] = w0 * z1 + x0 * y1 - y0 * x1 + z0 * w1;
- resultQuat[3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
- return resultQuat;
- };
- /**
- * Makes the given quaternion the identity quaternion (0, 0, 0, 1).
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The quaternion.
- * @return {!goog.vec.Quaternion.AnyType} Return quat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.makeIdentity = function(quat) {
- quat[0] = 0;
- quat[1] = 0;
- quat[2] = 0;
- quat[3] = 1;
- return quat;
- };
- /**
- * Generates a unit quaternion from the given angle-axis rotation pair.
- * The rotation axis is not required to be a unit vector, but should
- * have non-zero length. The angle should be specified in radians.
- *
- * @param {number} angle The angle (in radians) to rotate about the axis.
- * @param {!goog.vec.Quaternion.AnyType} axis Unit vector specifying the
- * axis of rotation.
- * @param {!goog.vec.Quaternion.AnyType} quat Unit quaternion to store the
- * result.
- * @return {!goog.vec.Quaternion.AnyType} Return quat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.fromAngleAxis = function(angle, axis, quat) {
- // Normalize the axis of rotation.
- goog.vec.Vec3.normalize(axis, axis);
- var halfAngle = 0.5 * angle;
- var sin = Math.sin(halfAngle);
- goog.vec.Quaternion.setFromValues(
- quat, sin * axis[0], sin * axis[1], sin * axis[2], Math.cos(halfAngle));
- // Normalize the resulting quaternion.
- goog.vec.Quaternion.normalize(quat, quat);
- return quat;
- };
- /**
- * Generates an angle-axis rotation pair from a unit quaternion.
- * The quaternion is assumed to be of unit length. The calculated
- * values are returned via the passed 'axis' object and the 'angle'
- * number returned by the function itself. The returned rotation axis
- * is a non-zero length unit vector, and the returned angle is in
- * radians in the range of [-PI, +PI].
- *
- * @param {!goog.vec.Quaternion.AnyType} quat Unit quaternion to convert.
- * @param {!goog.vec.Quaternion.AnyType} axis Vector to store the returned
- * rotation axis.
- * @return {number} angle Angle (in radians) to rotate about 'axis'.
- * The range of the returned angle is [-PI, +PI].
- */
- goog.vec.Quaternion.toAngleAxis = function(quat, axis) {
- var angle = 2 * Math.acos(quat[3]);
- var magnitude = Math.min(Math.max(1 - quat[3] * quat[3], 0), 1);
- if (magnitude < goog.vec.EPSILON) {
- // This is nearly an identity rotation, so just use a fixed +X axis.
- goog.vec.Vec3.setFromValues(axis, 1, 0, 0);
- } else {
- // Compute the proper rotation axis.
- goog.vec.Vec3.setFromValues(axis, quat[0], quat[1], quat[2]);
- // Make sure the rotation axis is of unit length.
- goog.vec.Vec3.normalize(axis, axis);
- }
- // Adjust the range of the returned angle to [-PI, +PI].
- if (angle > Math.PI) {
- angle -= 2 * Math.PI;
- }
- return angle;
- };
- /**
- * Generates the quaternion from the given 3x3 rotation matrix.
- *
- * Perf: http://jsperf.com/conversion-of-3x3-matrix-to-quaternion
- * http://jsperf.com/goog-vec-fromrotationmatrix3-a
- *
- * @param {!goog.vec.AnyType} matrix The source matrix.
- * @param {!goog.vec.Quaternion.AnyType} quat The resulting quaternion.
- * @return {!goog.vec.Quaternion.AnyType} Return quat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.fromRotationMatrix3 = function(matrix, quat) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- var fTrace = matrix[0] + matrix[4] + matrix[8];
- var fRoot;
- if (fTrace > 0.0) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- quat[3] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot; // 1 / (4w)
- quat[0] = (matrix[5] - matrix[7]) * fRoot;
- quat[1] = (matrix[6] - matrix[2]) * fRoot;
- quat[2] = (matrix[1] - matrix[3]) * fRoot;
- } else {
- // |w| <= 1/2
- var i = 0;
- if (matrix[4] > matrix[0]) i = 1;
- if (matrix[8] > matrix[i * 3 + i]) i = 2;
- var j = (i + 1) % 3;
- var k = (i + 2) % 3;
- fRoot = Math.sqrt(
- matrix[i * 3 + i] - matrix[j * 3 + j] - matrix[k * 3 + k] + 1.0);
- quat[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- quat[3] = (matrix[j * 3 + k] - matrix[k * 3 + j]) * fRoot;
- quat[j] = (matrix[j * 3 + i] + matrix[i * 3 + j]) * fRoot;
- quat[k] = (matrix[k * 3 + i] + matrix[i * 3 + k]) * fRoot;
- // Flip all signs if w is negative.
- if (quat[3] < 0) {
- quat[0] = -quat[0];
- quat[1] = -quat[1];
- quat[2] = -quat[2];
- quat[3] = -quat[3];
- }
- }
- return quat;
- };
- /**
- * Generates the quaternion from the given 4x4 rotation matrix.
- *
- * Perf: http://jsperf.com/goog-vec-fromrotationmatrix4
- *
- * Implementation is the same as fromRotationMatrix3 but using indices from
- * the top left 3x3 in a 4x4 matrix.
- *
- * @param {!goog.vec.AnyType} matrix The source matrix.
- * @param {!goog.vec.Quaternion.AnyType} quat The resulting quaternion.
- * @return {!goog.vec.Quaternion.AnyType} Return quat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.fromRotationMatrix4 = function(matrix, quat) {
- var fTrace = matrix[0] + matrix[5] + matrix[10];
- var fRoot;
- if (fTrace > 0.0) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- quat[3] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot; // 1 / (4w)
- quat[0] = (matrix[6] - matrix[9]) * fRoot;
- quat[1] = (matrix[8] - matrix[2]) * fRoot;
- quat[2] = (matrix[1] - matrix[4]) * fRoot;
- } else {
- // |w| <= 1/2
- var i = 0;
- if (matrix[5] > matrix[0]) i = 1;
- if (matrix[10] > matrix[i * 4 + i]) i = 2;
- var j = (i + 1) % 3;
- var k = (i + 2) % 3;
- fRoot = Math.sqrt(
- matrix[i * 4 + i] - matrix[j * 4 + j] - matrix[k * 4 + k] + 1.0);
- quat[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- quat[3] = (matrix[j * 4 + k] - matrix[k * 4 + j]) * fRoot;
- quat[j] = (matrix[j * 4 + i] + matrix[i * 4 + j]) * fRoot;
- quat[k] = (matrix[k * 4 + i] + matrix[i * 4 + k]) * fRoot;
- // Flip all signs if w is negative.
- if (quat[3] < 0) {
- quat[0] = -quat[0];
- quat[1] = -quat[1];
- quat[2] = -quat[2];
- quat[3] = -quat[3];
- }
- }
- return quat;
- };
- /**
- * Generates the 3x3 rotation matrix from the given quaternion.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The source quaternion.
- * @param {!goog.vec.AnyType} matrix The resulting matrix.
- * @return {!goog.vec.AnyType} Return resulting matrix so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.toRotationMatrix3 = function(quat, matrix) {
- var x = quat[0], y = quat[1], z = quat[2], w = quat[3];
- var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;
- var wx = x2 * w;
- var wy = y2 * w;
- var wz = z2 * w;
- var xx = x2 * x;
- var xy = y2 * x;
- var xz = z2 * x;
- var yy = y2 * y;
- var yz = z2 * y;
- var zz = z2 * z;
- matrix[0] = 1 - (yy + zz);
- matrix[1] = xy + wz;
- matrix[2] = xz - wy;
- matrix[3] = xy - wz;
- matrix[4] = 1 - (xx + zz);
- matrix[5] = yz + wx;
- matrix[6] = xz + wy;
- matrix[7] = yz - wx;
- matrix[8] = 1 - (xx + yy);
- return matrix;
- };
- /**
- * Generates the 4x4 rotation matrix from the given quaternion.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The source quaternion.
- * @param {!goog.vec.AnyType} matrix The resulting matrix.
- * @return {!goog.vec.AnyType} Return resulting matrix so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.toRotationMatrix4 = function(quat, matrix) {
- var x = quat[0], y = quat[1], z = quat[2], w = quat[3];
- var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;
- var wx = x2 * w;
- var wy = y2 * w;
- var wz = z2 * w;
- var xx = x2 * x;
- var xy = y2 * x;
- var xz = z2 * x;
- var yy = y2 * y;
- var yz = z2 * y;
- var zz = z2 * z;
- matrix[0] = 1 - (yy + zz);
- matrix[1] = xy + wz;
- matrix[2] = xz - wy;
- matrix[3] = 0;
- matrix[4] = xy - wz;
- matrix[5] = 1 - (xx + zz);
- matrix[6] = yz + wx;
- matrix[7] = 0;
- matrix[8] = xz + wy;
- matrix[9] = yz - wx;
- matrix[10] = 1 - (xx + yy);
- matrix[11] = 0;
- matrix[12] = 0;
- matrix[13] = 0;
- matrix[14] = 0;
- matrix[15] = 1;
- return matrix;
- };
- /**
- * Rotates a quaternion by the given angle about the X axis.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The quaternion.
- * @param {number} angle The angle in radians.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.rotateX = function(quat, angle, resultQuat) {
- angle *= 0.5;
- var ax = quat[0], ay = quat[1], az = quat[2], aw = quat[3];
- var bx = Math.sin(angle), bw = Math.cos(angle);
- resultQuat[0] = ax * bw + aw * bx;
- resultQuat[1] = ay * bw + az * bx;
- resultQuat[2] = az * bw - ay * bx;
- resultQuat[3] = aw * bw - ax * bx;
- return resultQuat;
- };
- /**
- * Rotates a quaternion by the given angle about the Y axis.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The quaternion.
- * @param {number} angle The angle in radians.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.rotateY = function(quat, angle, resultQuat) {
- angle *= 0.5;
- var ax = quat[0], ay = quat[1], az = quat[2], aw = quat[3];
- var by = Math.sin(angle), bw = Math.cos(angle);
- resultQuat[0] = ax * bw - az * by;
- resultQuat[1] = ay * bw + aw * by;
- resultQuat[2] = az * bw + ax * by;
- resultQuat[3] = aw * bw - ay * by;
- return resultQuat;
- };
- /**
- * Rotates a quaternion by the given angle about the Z axis.
- *
- * @param {!goog.vec.Quaternion.AnyType} quat The quaternion.
- * @param {number} angle The angle in radians.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.rotateZ = function(quat, angle, resultQuat) {
- angle *= 0.5;
- var ax = quat[0], ay = quat[1], az = quat[2], aw = quat[3];
- var bz = Math.sin(angle), bw = Math.cos(angle);
- resultQuat[0] = ax * bw + ay * bz;
- resultQuat[1] = ay * bw - ax * bz;
- resultQuat[2] = az * bw + aw * bz;
- resultQuat[3] = aw * bw - az * bz;
- return resultQuat;
- };
- /**
- * Transforms a vec with a quaternion. Works on both vec3s and vec4s.
- *
- * @param {!goog.vec.AnyType} vec The vec to transform.
- * @param {!goog.vec.Quaternion.AnyType} quat The quaternion.
- * @param {!goog.vec.AnyType} resultVec The vec to receive the result.
- * @return {!goog.vec.AnyType} Return resultVec so that operations can be
- * chained together. Note that the caller is responsible for type-casting.
- */
- goog.vec.Quaternion.transformVec = function(vec, quat, resultVec) {
- var x = vec[0], y = vec[1], z = vec[2];
- var qx = quat[0], qy = quat[1], qz = quat[2], qw = quat[3];
- // Calculate quat * vec.
- var ix = qw * x + qy * z - qz * y;
- var iy = qw * y + qz * x - qx * z;
- var iz = qw * z + qx * y - qy * x;
- var iw = -qx * x - qy * y - qz * z;
- // Calculate result * inverse quat.
- resultVec[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- resultVec[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- resultVec[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return resultVec;
- };
- /**
- * Computes the spherical linear interpolated value from the given quaternions
- * q0 and q1 according to the coefficient t. The resulting quaternion is stored
- * in resultQuat.
- *
- * @param {!goog.vec.Quaternion.AnyType} q0 The first quaternion.
- * @param {!goog.vec.Quaternion.AnyType} q1 The second quaternion.
- * @param {number} t The interpolating coefficient.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the result.
- * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that
- * operations can be chained together.
- */
- goog.vec.Quaternion.slerp = function(q0, q1, t, resultQuat) {
- // Compute the dot product between q0 and q1 (cos of the angle between q0 and
- // q1). If it's outside the interval [-1,1], then the arccos is not defined.
- // The usual reason for this is that q0 and q1 are colinear. In this case
- // the angle between the two is zero, so just return q1.
- var cosVal = goog.vec.Quaternion.dot(q0, q1);
- if (cosVal > 1 || cosVal < -1) {
- goog.vec.Vec4.setFromArray(resultQuat, q1);
- return resultQuat;
- }
- // Quaternions are a double cover on the space of rotations. That is, q and -q
- // represent the same rotation. Thus we have two possibilities when
- // interpolating between q0 and q1: going the short way or the long way. We
- // prefer the short way since that is the likely expectation from users.
- var factor = 1;
- if (cosVal < 0) {
- factor = -1;
- cosVal = -cosVal;
- }
- // Compute the angle between q0 and q1. If it's very small, then just return
- // q1 to avoid a very large denominator below.
- var angle = Math.acos(cosVal);
- if (angle <= goog.vec.EPSILON) {
- goog.vec.Vec4.setFromArray(resultQuat, q1);
- return resultQuat;
- }
- // Compute the coefficients and interpolate.
- var invSinVal = 1 / Math.sin(angle);
- var c0 = Math.sin((1 - t) * angle) * invSinVal;
- var c1 = factor * Math.sin(t * angle) * invSinVal;
- resultQuat[0] = q0[0] * c0 + q1[0] * c1;
- resultQuat[1] = q0[1] * c0 + q1[1] * c1;
- resultQuat[2] = q0[2] * c0 + q1[2] * c1;
- resultQuat[3] = q0[3] * c0 + q1[3] * c1;
- return resultQuat;
- };
- /**
- * Compute the simple linear interpolation of the two quaternions q0 and q1
- * according to the coefficient t. The resulting quaternion is stored in
- * resultVec.
- *
- * @param {!goog.vec.Quaternion.AnyType} q0 The first quaternion.
- * @param {!goog.vec.Quaternion.AnyType} q1 The second quaternion.
- * @param {number} t The interpolation factor.
- * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to
- * receive the results (may be q0 or q1).
- */
- goog.vec.Quaternion.nlerp = goog.vec.Vec4.lerp;
|