SkyShader.js 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. /**
  2. * @author zz85 / https://github.com/zz85
  3. *
  4. * Based on "A Practical Analytic Model for Daylight"
  5. * aka The Preetham Model, the de facto standard analytic skydome model
  6. * http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
  7. *
  8. * First implemented by Simon Wallner
  9. * http://www.simonwallner.at/projects/atmospheric-scattering
  10. *
  11. * Improved by Martin Upitis
  12. * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
  13. *
  14. * Three.js integration by zz85 http://twitter.com/blurspline
  15. */
  16. THREE.Sky = function () {
  17. var skyShader = THREE.Sky.SkyShader;
  18. var skyUniforms = THREE.UniformsUtils.clone( skyShader.uniforms );
  19. var skyMat = new THREE.ShaderMaterial( {
  20. fragmentShader: skyShader.fragmentShader,
  21. vertexShader: skyShader.vertexShader,
  22. uniforms: skyUniforms,
  23. side: THREE.BackSide
  24. } );
  25. var skyGeo = new THREE.SphereBufferGeometry( 5000, 32, 15 );
  26. var skyMesh = new THREE.Mesh( skyGeo, skyMat );
  27. // Expose variables
  28. this.mesh = skyMesh;
  29. this.uniforms = skyUniforms;
  30. };
  31. THREE.Sky.SkyShader = {
  32. uniforms: {
  33. luminance: { value: 1 },
  34. turbidity: { value: 2 },
  35. rayleigh: { value: 1 },
  36. mieCoefficient: { value: 0.005 },
  37. mieDirectionalG: { value: 0.8 },
  38. sunPosition: { value: new THREE.Vector3() }
  39. },
  40. vertexShader: [
  41. 'uniform vec3 sunPosition;',
  42. 'uniform float rayleigh;',
  43. 'uniform float turbidity;',
  44. 'uniform float mieCoefficient;',
  45. 'varying vec3 vWorldPosition;',
  46. 'varying vec3 vSunDirection;',
  47. 'varying float vSunfade;',
  48. 'varying vec3 vBetaR;',
  49. 'varying vec3 vBetaM;',
  50. 'varying float vSunE;',
  51. 'const vec3 up = vec3( 0.0, 1.0, 0.0 );',
  52. // constants for atmospheric scattering
  53. 'const float e = 2.71828182845904523536028747135266249775724709369995957;',
  54. 'const float pi = 3.141592653589793238462643383279502884197169;',
  55. // wavelength of used primaries, according to preetham
  56. 'const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );',
  57. // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
  58. // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
  59. 'const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );',
  60. // mie stuff
  61. // K coefficient for the primaries
  62. 'const float v = 4.0;',
  63. 'const vec3 K = vec3( 0.686, 0.678, 0.666 );',
  64. // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
  65. 'const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );',
  66. // earth shadow hack
  67. // cutoffAngle = pi / 1.95;
  68. 'const float cutoffAngle = 1.6110731556870734;',
  69. 'const float steepness = 1.5;',
  70. 'const float EE = 1000.0;',
  71. 'float sunIntensity( float zenithAngleCos ) {',
  72. ' zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );',
  73. ' return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );',
  74. '}',
  75. 'vec3 totalMie( float T ) {',
  76. ' float c = ( 0.2 * T ) * 10E-18;',
  77. ' return 0.434 * c * MieConst;',
  78. '}',
  79. 'void main() {',
  80. ' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );',
  81. ' vWorldPosition = worldPosition.xyz;',
  82. ' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
  83. ' vSunDirection = normalize( sunPosition );',
  84. ' vSunE = sunIntensity( dot( vSunDirection, up ) );',
  85. ' vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );',
  86. ' float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );',
  87. // extinction (absorbtion + out scattering)
  88. // rayleigh coefficients
  89. ' vBetaR = totalRayleigh * rayleighCoefficient;',
  90. // mie coefficients
  91. ' vBetaM = totalMie( turbidity ) * mieCoefficient;',
  92. '}'
  93. ].join( '\n' ),
  94. fragmentShader: [
  95. 'varying vec3 vWorldPosition;',
  96. 'varying vec3 vSunDirection;',
  97. 'varying float vSunfade;',
  98. 'varying vec3 vBetaR;',
  99. 'varying vec3 vBetaM;',
  100. 'varying float vSunE;',
  101. 'uniform float luminance;',
  102. 'uniform float mieDirectionalG;',
  103. 'const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );',
  104. // constants for atmospheric scattering
  105. 'const float pi = 3.141592653589793238462643383279502884197169;',
  106. 'const float n = 1.0003;', // refractive index of air
  107. 'const float N = 2.545E25;', // number of molecules per unit volume for air at
  108. // 288.15K and 1013mb (sea level -45 celsius)
  109. // optical length at zenith for molecules
  110. 'const float rayleighZenithLength = 8.4E3;',
  111. 'const float mieZenithLength = 1.25E3;',
  112. 'const vec3 up = vec3( 0.0, 1.0, 0.0 );',
  113. // 66 arc seconds -> degrees, and the cosine of that
  114. 'const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;',
  115. // 3.0 / ( 16.0 * pi )
  116. 'const float THREE_OVER_SIXTEENPI = 0.05968310365946075;',
  117. // 1.0 / ( 4.0 * pi )
  118. 'const float ONE_OVER_FOURPI = 0.07957747154594767;',
  119. 'float rayleighPhase( float cosTheta ) {',
  120. ' return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );',
  121. '}',
  122. 'float hgPhase( float cosTheta, float g ) {',
  123. ' float g2 = pow( g, 2.0 );',
  124. ' float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );',
  125. ' return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );',
  126. '}',
  127. // Filmic ToneMapping http://filmicgames.com/archives/75
  128. 'const float A = 0.15;',
  129. 'const float B = 0.50;',
  130. 'const float C = 0.10;',
  131. 'const float D = 0.20;',
  132. 'const float E = 0.02;',
  133. 'const float F = 0.30;',
  134. 'const float whiteScale = 1.0748724675633854;', // 1.0 / Uncharted2Tonemap(1000.0)
  135. 'vec3 Uncharted2Tonemap( vec3 x ) {',
  136. ' return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;',
  137. '}',
  138. 'void main() {',
  139. // optical length
  140. // cutoff angle at 90 to avoid singularity in next formula.
  141. ' float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );',
  142. ' float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );',
  143. ' float sR = rayleighZenithLength * inverse;',
  144. ' float sM = mieZenithLength * inverse;',
  145. // combined extinction factor
  146. ' vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );',
  147. // in scattering
  148. ' float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );',
  149. ' float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );',
  150. ' vec3 betaRTheta = vBetaR * rPhase;',
  151. ' float mPhase = hgPhase( cosTheta, mieDirectionalG );',
  152. ' vec3 betaMTheta = vBetaM * mPhase;',
  153. ' vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );',
  154. ' Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );',
  155. // nightsky
  156. ' vec3 direction = normalize( vWorldPosition - cameraPos );',
  157. ' float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]',
  158. ' float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]',
  159. ' vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );',
  160. ' vec3 L0 = vec3( 0.1 ) * Fex;',
  161. // composition + solar disc
  162. ' float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );',
  163. ' L0 += ( vSunE * 19000.0 * Fex ) * sundisk;',
  164. ' vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );',
  165. ' vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );',
  166. ' vec3 color = curr * whiteScale;',
  167. ' vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );',
  168. ' gl_FragColor = vec4( retColor, 1.0 );',
  169. '}'
  170. ].join( '\n' )
  171. };