123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- /**
- * @license
- * Copyright The Closure Library Authors.
- * SPDX-License-Identifier: Apache-2.0
- */
- goog.module('goog.vec.QuaternionTest');
- goog.setTestOnly();
- const Mat3 = goog.require('goog.vec.Mat3');
- const Mat4 = goog.require('goog.vec.Mat4');
- const Quaternion = goog.require('goog.vec.Quaternion');
- const Vec3 = goog.require('goog.vec.Vec3');
- const testSuite = goog.require('goog.testing.testSuite');
- const vec3f = goog.require('goog.vec.vec3f');
- testSuite({
- testCreateIdentityFloat32() {
- const q = Quaternion.createIdentityFloat32();
- assertElementsEquals([0, 0, 0, 1], q);
- },
- testInvert() {
- const q0 = Quaternion.createFloat32FromValues(1, 2, 3, 4);
- const q1 = Quaternion.createFloat32();
- Quaternion.invert(q0, q1);
- assertElementsRoughlyEqual([1, 2, 3, 4], q0, goog.vec.EPSILON);
- assertElementsRoughlyEqual(
- [-0.033333, -0.066666, -0.1, 0.133333], q1, goog.vec.EPSILON);
- },
- testConjugate() {
- const q0 = Quaternion.createFloat32FromValues(1, 2, 3, 4);
- const q1 = Quaternion.createFloat32();
- Quaternion.conjugate(q0, q1);
- assertElementsEquals([1, 2, 3, 4], q0);
- assertElementsEquals([-1, -2, -3, 4], q1);
- Quaternion.conjugate(q1, q1);
- assertElementsEquals([1, 2, 3, 4], q1);
- // Conjugate and inverse of a normalized quaternion should be equal.
- const q2 = Quaternion.createFloat32();
- const q3 = Quaternion.createFloat32();
- Quaternion.normalize(q0, q2);
- Quaternion.conjugate(q2, q2);
- Quaternion.normalize(q0, q3);
- Quaternion.invert(q3, q3);
- assertElementsRoughlyEqual(q2, q3, goog.vec.EPSILON);
- },
- testConcat() {
- const q0 = Quaternion.createFloat32FromValues(1, 2, 3, 4);
- const q1 = Quaternion.createFloat32FromValues(2, 3, 4, 5);
- const q2 = Quaternion.createFloat32();
- Quaternion.concat(q0, q1, q2);
- assertElementsEquals([12, 24, 30, 0], q2);
- Quaternion.concat(q0, q1, q0);
- assertElementsEquals([12, 24, 30, 0], q0);
- },
- testMakeIdentity() {
- const q = Quaternion.createFloat32FromValues(1, 2, 3, 4);
- Quaternion.makeIdentity(q);
- assertElementsEquals([0, 0, 0, 1], q);
- },
- testRotateX() {
- const q = Quaternion.createIdentityFloat32();
- Quaternion.rotateX(q, Math.PI / 2, q);
- const axis = Vec3.createFloat32();
- const angle = Quaternion.toAngleAxis(q, axis);
- assertElementsRoughlyEqual([1, 0, 0], axis, goog.vec.EPSILON);
- assertRoughlyEquals(Math.PI / 2, angle, goog.vec.EPSILON);
- },
- testRotateY() {
- const q = Quaternion.createIdentityFloat32();
- Quaternion.rotateY(q, Math.PI / 2, q);
- const axis = Vec3.createFloat32();
- const angle = Quaternion.toAngleAxis(q, axis);
- assertElementsRoughlyEqual([0, 1, 0], axis, goog.vec.EPSILON);
- assertRoughlyEquals(Math.PI / 2, angle, goog.vec.EPSILON);
- },
- testRotateZ() {
- const q = Quaternion.createIdentityFloat32();
- Quaternion.rotateZ(q, Math.PI / 2, q);
- const axis = Vec3.createFloat32();
- const angle = Quaternion.toAngleAxis(q, axis);
- assertElementsRoughlyEqual([0, 0, 1], axis, goog.vec.EPSILON);
- assertRoughlyEquals(Math.PI / 2, angle, goog.vec.EPSILON);
- },
- testTransformVec() {
- const q = Quaternion.createIdentityFloat32();
- Quaternion.rotateX(q, Math.PI / 2, q);
- const v0 = vec3f.setFromArray(vec3f.create(), [0, 0, 1]);
- const v1 = vec3f.create();
- Quaternion.transformVec(v0, q, v1);
- assertElementsRoughlyEqual([0, -1, 0], v1, goog.vec.EPSILON);
- },
- testSlerp() {
- const q0 = Quaternion.createFloat32FromValues(1, 2, 3, 4);
- const q1 = Quaternion.createFloat32FromValues(5, -6, 7, -8);
- const q2 = Quaternion.createFloat32();
- Quaternion.slerp(q0, q1, 0, q2);
- assertElementsEquals([5, -6, 7, -8], q2);
- Quaternion.normalize(q0, q0);
- Quaternion.normalize(q1, q1);
- Quaternion.slerp(q0, q0, .5, q2);
- assertElementsEquals(q0, q2);
- Quaternion.slerp(q0, q1, 0, q2);
- assertElementsEquals(q0, q2);
- Quaternion.slerp(q0, q1, 1, q2);
- if (q1[3] * q2[3] < 0) {
- Quaternion.negate(q2, q2);
- }
- assertElementsEquals(q1, q2);
- Quaternion.slerp(q0, q1, .3, q2);
- assertElementsRoughlyEqual(
- [-0.000501537327541, 0.4817612034640, 0.2398775270769, 0.842831337398],
- q2, goog.vec.EPSILON);
- Quaternion.slerp(q0, q1, .5, q2);
- assertElementsRoughlyEqual(
- [-0.1243045421171, 0.51879732466, 0.0107895780990, 0.845743047108], q2,
- goog.vec.EPSILON);
- Quaternion.slerp(q0, q1, .8, q0);
- assertElementsRoughlyEqual(
- [-0.291353561485, 0.506925588797, -0.3292443285721, 0.741442999653], q0,
- goog.vec.EPSILON);
- },
- testFromRotMatrix() {
- const m0 = Mat3.createFloat32FromValues(
- -0.408248, 0.8796528, -0.244016935, -0.4082482, 0.06315623, 0.9106836,
- 0.8164965, 0.47140452, 0.3333333);
- const q0 = Quaternion.createFloat32();
- Quaternion.fromRotationMatrix3(m0, q0);
- assertElementsRoughlyEqual(
- [
- 0.22094256606638, 0.53340203646030, 0.64777022739548,
- 0.497051689967954
- ],
- q0, goog.vec.EPSILON);
- const m1 = Mat3.createFloat32FromValues(
- -0.544310, 0, 0.838884, 0, 1, 0, -0.838884, 0, -0.544310);
- const q1 = Quaternion.createFloat32();
- Quaternion.fromRotationMatrix3(m1, q1);
- assertElementsRoughlyEqual(
- [0, -0.87872350215912, 0, 0.477331042289734], q1, goog.vec.EPSILON);
- const m2 = Mat4.createFloat32FromValues(
- -0.408248, 0.8796528, -0.244016935, 0, -0.4082482, 0.06315623,
- 0.9106836, 0, 0.8164965, 0.47140452, 0.3333333, 0, 0, 0, 0, 1);
- const q2 = Quaternion.createFloat32();
- Quaternion.fromRotationMatrix4(m2, q2);
- assertElementsRoughlyEqual(
- [
- 0.22094256606638, 0.53340203646030, 0.64777022739548,
- 0.497051689967954
- ],
- q2, goog.vec.EPSILON);
- const m3 = Mat4.createFloat32FromValues(
- -0.544310, 0, 0.838884, 0, 0, 1, 0, 0, -0.838884, 0, -0.544310, 0, 0, 0,
- 0, 1);
- const q3 = Quaternion.createFloat32();
- Quaternion.fromRotationMatrix4(m3, q3);
- assertElementsRoughlyEqual(
- [0, -0.87872350215912, 0, 0.477331042289734], q3, goog.vec.EPSILON);
- assertElementsRoughlyEqual(q0, q2, goog.vec.EPSILON);
- assertElementsRoughlyEqual(q1, q3, goog.vec.EPSILON);
- },
- testToRotMatrix() {
- const q0 = Quaternion.createFloat32FromValues(
- 0.22094256606638, 0.53340203646030, 0.64777022739548,
- 0.497051689967954);
- const m0 = Mat3.createFloat32();
- Quaternion.toRotationMatrix3(q0, m0);
- assertElementsRoughlyEqual(
- [
- -0.408248, 0.8796528, -0.244016935, -0.4082482, 0.06315623, 0.9106836,
- 0.8164965, 0.47140452, 0.3333333
- ],
- m0, goog.vec.EPSILON);
- const m1 = Mat4.createFloat32();
- Quaternion.toRotationMatrix4(q0, m1);
- assertElementsRoughlyEqual(
- [
- -0.408248, 0.8796528, -0.244016935, 0, -0.4082482, 0.06315623,
- 0.9106836, 0, 0.8164965, 0.47140452, 0.3333333, 0, 0, 0, 0, 1
- ],
- m1, goog.vec.EPSILON);
- },
- testToAngleAxis() {
- // Test the identity rotation.
- const q0 = Quaternion.createFloat32FromValues(0, 0, 0, 1);
- const axis = Vec3.createFloat32();
- let angle = Quaternion.toAngleAxis(q0, axis);
- assertRoughlyEquals(0.0, angle, goog.vec.EPSILON);
- assertElementsRoughlyEqual([1, 0, 0], axis, goog.vec.EPSILON);
- // Check equivalent representations of the same rotation.
- Quaternion.setFromValues(
- q0, -0.288675032, 0.622008682, -0.17254543, 0.70710678);
- angle = Quaternion.toAngleAxis(q0, axis);
- assertRoughlyEquals(Math.PI / 2, angle, goog.vec.EPSILON);
- assertElementsRoughlyEqual(
- [-0.408248, 0.8796528, -0.244016], axis, goog.vec.EPSILON);
- // The polar opposite unit quaternion is the same rotation, so we
- // check that the negated quaternion yields the negated angle and axis.
- Quaternion.negate(q0, q0);
- angle = Quaternion.toAngleAxis(q0, axis);
- assertRoughlyEquals(-Math.PI / 2, angle, goog.vec.EPSILON);
- assertElementsRoughlyEqual(
- [0.408248, -0.8796528, 0.244016], axis, goog.vec.EPSILON);
- // Verify that the inverse rotation yields the inverse axis.
- Quaternion.conjugate(q0, q0);
- angle = Quaternion.toAngleAxis(q0, axis);
- assertRoughlyEquals(-Math.PI / 2, angle, goog.vec.EPSILON);
- assertElementsRoughlyEqual(
- [-0.408248, 0.8796528, -0.244016], axis, goog.vec.EPSILON);
- },
- testFromAngleAxis() {
- // Test identity rotation (zero angle or multiples of TWO_PI).
- let angle = 0.0;
- const axis = Vec3.createFloat32FromValues(-0.408248, 0.8796528, -0.244016);
- const q0 = Quaternion.createFloat32();
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual([0, 0, 0, 1], q0, goog.vec.EPSILON);
- angle = 4 * Math.PI;
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual([0, 0, 0, 1], q0, goog.vec.EPSILON);
- // General test of various rotations around axes of different lengths.
- angle = Math.PI / 2;
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual(
- [-0.288675032, 0.622008682, -0.17254543, 0.70710678], q0,
- goog.vec.EPSILON);
- // Angle multiples of TWO_PI with a scaled axis should be the same.
- angle += 4 * Math.PI;
- Vec3.scale(axis, 7.0, axis);
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual(
- [-0.288675032, 0.622008682, -0.17254543, 0.70710678], q0,
- goog.vec.EPSILON);
- Vec3.setFromValues(axis, 1, 5, 8);
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual(
- [0.074535599, 0.372677996, 0.596284794, 0.70710678], q0,
- goog.vec.EPSILON);
- // Check equivalent representations of the same rotation.
- angle = Math.PI / 5;
- Vec3.setFromValues(axis, 5, -2, -10);
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual(
- [0.136037146, -0.0544148586, -0.27207429, 0.951056516], q0,
- goog.vec.EPSILON);
- // The negated angle and axis should yield the same rotation.
- angle = -Math.PI / 5;
- Vec3.negate(axis, axis);
- Quaternion.fromAngleAxis(angle, axis, q0);
- assertElementsRoughlyEqual(
- [0.136037146, -0.0544148586, -0.27207429, 0.951056516], q0,
- goog.vec.EPSILON);
- },
- });
|