| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934 | /** * @license * Copyright The Closure Library Authors. * SPDX-License-Identifier: Apache-2.0 */////////////////////////// NOTE ABOUT EDITING THIS FILE /////////////////////////                                                                           //// Any edits to this file must be applied to mat4f.js by running:            ////   swap_type.sh mat4d.js > mat4f.js                                        ////                                                                           //////////////////////////// NOTE ABOUT EDITING THIS FILE ////////////////////////** * @fileoverview Provides functions for operating on 4x4 double (64bit) * matrices.  The matrices are stored in column-major order. * * The last parameter will typically be the output matrix and an * object can be both an input and output parameter to all methods except * where noted. * * See the README for notes about the design and structure of the API * (especially related to performance). */goog.provide('goog.vec.mat4d');goog.provide('goog.vec.mat4d.Type');goog.require('goog.vec');/** @suppress {extraRequire} */goog.require('goog.vec.Quaternion');goog.require('goog.vec.vec3d');goog.require('goog.vec.vec4d');/** @typedef {!goog.vec.Float64} */ goog.vec.mat4d.Type;/** * Creates a mat4d with all elements initialized to zero. * * @return {!goog.vec.mat4d.Type} The new mat4d. */goog.vec.mat4d.create = function() {  return new Float64Array(16);};/** * Creates a mat4d identity matrix. * * @return {!goog.vec.mat4d.Type} The new mat4d. */goog.vec.mat4d.createIdentity = function() {  var mat = goog.vec.mat4d.create();  mat[0] = mat[5] = mat[10] = mat[15] = 1;  return mat;};/** * Initializes the matrix from the set of values. Note the values supplied are * in column major order. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the *     values. * @param {number} v00 The values at (0, 0). * @param {number} v10 The values at (1, 0). * @param {number} v20 The values at (2, 0). * @param {number} v30 The values at (3, 0). * @param {number} v01 The values at (0, 1). * @param {number} v11 The values at (1, 1). * @param {number} v21 The values at (2, 1). * @param {number} v31 The values at (3, 1). * @param {number} v02 The values at (0, 2). * @param {number} v12 The values at (1, 2). * @param {number} v22 The values at (2, 2). * @param {number} v32 The values at (3, 2). * @param {number} v03 The values at (0, 3). * @param {number} v13 The values at (1, 3). * @param {number} v23 The values at (2, 3). * @param {number} v33 The values at (3, 3). * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setFromValues = function(    mat, v00, v10, v20, v30, v01, v11, v21, v31, v02, v12, v22, v32, v03, v13,    v23, v33) {  mat[0] = v00;  mat[1] = v10;  mat[2] = v20;  mat[3] = v30;  mat[4] = v01;  mat[5] = v11;  mat[6] = v21;  mat[7] = v31;  mat[8] = v02;  mat[9] = v12;  mat[10] = v22;  mat[11] = v32;  mat[12] = v03;  mat[13] = v13;  mat[14] = v23;  mat[15] = v33;  return mat;};/** * Initializes mat4d mat from mat4d src. * * @param {!goog.vec.mat4d.Type} mat The destination matrix. * @param {!goog.vec.mat4d.Type} src The source matrix. * @return {!goog.vec.mat4d.Type} Return mat so that operations can be *     chained together. */goog.vec.mat4d.setFromMat4d = function(mat, src) {  mat[0] = src[0];  mat[1] = src[1];  mat[2] = src[2];  mat[3] = src[3];  mat[4] = src[4];  mat[5] = src[5];  mat[6] = src[6];  mat[7] = src[7];  mat[8] = src[8];  mat[9] = src[9];  mat[10] = src[10];  mat[11] = src[11];  mat[12] = src[12];  mat[13] = src[13];  mat[14] = src[14];  mat[15] = src[15];  return mat;};/** * Initializes mat4d mat from mat4f src (typed as a Float32Array to * avoid circular goog.requires). * * @param {!goog.vec.mat4d.Type} mat The destination matrix. * @param {Float32Array} src The source matrix. * @return {!goog.vec.mat4d.Type} Return mat so that operations can be *     chained together. */goog.vec.mat4d.setFromMat4f = function(mat, src) {  mat[0] = src[0];  mat[1] = src[1];  mat[2] = src[2];  mat[3] = src[3];  mat[4] = src[4];  mat[5] = src[5];  mat[6] = src[6];  mat[7] = src[7];  mat[8] = src[8];  mat[9] = src[9];  mat[10] = src[10];  mat[11] = src[11];  mat[12] = src[12];  mat[13] = src[13];  mat[14] = src[14];  mat[15] = src[15];  return mat;};/** * Initializes mat4d mat from Array src. * * @param {!goog.vec.mat4d.Type} mat The destination matrix. * @param {Array<number>} src The source matrix. * @return {!goog.vec.mat4d.Type} Return mat so that operations can be *     chained together. */goog.vec.mat4d.setFromArray = function(mat, src) {  mat[0] = src[0];  mat[1] = src[1];  mat[2] = src[2];  mat[3] = src[3];  mat[4] = src[4];  mat[5] = src[5];  mat[6] = src[6];  mat[7] = src[7];  mat[8] = src[8];  mat[9] = src[9];  mat[10] = src[10];  mat[11] = src[11];  mat[12] = src[12];  mat[13] = src[13];  mat[14] = src[14];  mat[15] = src[15];  return mat;};/** * Retrieves the element at the requested row and column. * * @param {!goog.vec.mat4d.Type} mat The matrix containing the value to *     retrieve. * @param {number} row The row index. * @param {number} column The column index. * @return {number} The element value at the requested row, column indices. */goog.vec.mat4d.getElement = function(mat, row, column) {  return mat[row + column * 4];};/** * Sets the element at the requested row and column. * * @param {!goog.vec.mat4d.Type} mat The matrix containing the value to *     retrieve. * @param {number} row The row index. * @param {number} column The column index. * @param {number} value The value to set at the requested row, column. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setElement = function(mat, row, column, value) {  mat[row + column * 4] = value;  return mat;};/** * Sets the diagonal values of the matrix from the given values. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {number} v00 The values for (0, 0). * @param {number} v11 The values for (1, 1). * @param {number} v22 The values for (2, 2). * @param {number} v33 The values for (3, 3). * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setDiagonalValues = function(mat, v00, v11, v22, v33) {  mat[0] = v00;  mat[5] = v11;  mat[10] = v22;  mat[15] = v33;  return mat;};/** * Sets the diagonal values of the matrix from the given vector. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {!goog.vec.vec4d.Type} vec The vector containing the values. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setDiagonal = function(mat, vec) {  mat[0] = vec[0];  mat[5] = vec[1];  mat[10] = vec[2];  mat[15] = vec[3];  return mat;};/** * Gets the diagonal values of the matrix into the given vector. * * @param {!goog.vec.mat4d.Type} mat The matrix containing the values. * @param {!goog.vec.vec4d.Type} vec The vector to receive the values. * @param {number=} opt_diagonal Which diagonal to get. A value of 0 selects the *     main diagonal, a positive number selects a super diagonal and a negative *     number selects a sub diagonal. * @return {!goog.vec.vec4d.Type} return vec so that operations can be *     chained together. */goog.vec.mat4d.getDiagonal = function(mat, vec, opt_diagonal) {  if (!opt_diagonal) {    // This is the most common case, so we avoid the for loop.    vec[0] = mat[0];    vec[1] = mat[5];    vec[2] = mat[10];    vec[3] = mat[15];  } else {    var offset = opt_diagonal > 0 ? 4 * opt_diagonal : -opt_diagonal;    for (var i = 0; i < 4 - Math.abs(opt_diagonal); i++) {      vec[i] = mat[offset + 5 * i];    }  }  return vec;};/** * Sets the specified column with the supplied values. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {number} column The column index to set the values on. * @param {number} v0 The value for row 0. * @param {number} v1 The value for row 1. * @param {number} v2 The value for row 2. * @param {number} v3 The value for row 3. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setColumnValues = function(mat, column, v0, v1, v2, v3) {  var i = column * 4;  mat[i] = v0;  mat[i + 1] = v1;  mat[i + 2] = v2;  mat[i + 3] = v3;  return mat;};/** * Sets the specified column with the value from the supplied vector. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {number} column The column index to set the values on. * @param {!goog.vec.vec4d.Type} vec The vector of elements for the column. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setColumn = function(mat, column, vec) {  var i = column * 4;  mat[i] = vec[0];  mat[i + 1] = vec[1];  mat[i + 2] = vec[2];  mat[i + 3] = vec[3];  return mat;};/** * Retrieves the specified column from the matrix into the given vector. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the values. * @param {number} column The column to get the values from. * @param {!goog.vec.vec4d.Type} vec The vector of elements to *     receive the column. * @return {!goog.vec.vec4d.Type} return vec so that operations can be *     chained together. */goog.vec.mat4d.getColumn = function(mat, column, vec) {  var i = column * 4;  vec[0] = mat[i];  vec[1] = mat[i + 1];  vec[2] = mat[i + 2];  vec[3] = mat[i + 3];  return vec;};/** * Sets the columns of the matrix from the given vectors. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {!goog.vec.vec4d.Type} vec0 The values for column 0. * @param {!goog.vec.vec4d.Type} vec1 The values for column 1. * @param {!goog.vec.vec4d.Type} vec2 The values for column 2. * @param {!goog.vec.vec4d.Type} vec3 The values for column 3. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setColumns = function(mat, vec0, vec1, vec2, vec3) {  mat[0] = vec0[0];  mat[1] = vec0[1];  mat[2] = vec0[2];  mat[3] = vec0[3];  mat[4] = vec1[0];  mat[5] = vec1[1];  mat[6] = vec1[2];  mat[7] = vec1[3];  mat[8] = vec2[0];  mat[9] = vec2[1];  mat[10] = vec2[2];  mat[11] = vec2[3];  mat[12] = vec3[0];  mat[13] = vec3[1];  mat[14] = vec3[2];  mat[15] = vec3[3];  return mat;};/** * Retrieves the column values from the given matrix into the given vectors. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the columns. * @param {!goog.vec.vec4d.Type} vec0 The vector to receive column 0. * @param {!goog.vec.vec4d.Type} vec1 The vector to receive column 1. * @param {!goog.vec.vec4d.Type} vec2 The vector to receive column 2. * @param {!goog.vec.vec4d.Type} vec3 The vector to receive column 3. */goog.vec.mat4d.getColumns = function(mat, vec0, vec1, vec2, vec3) {  vec0[0] = mat[0];  vec0[1] = mat[1];  vec0[2] = mat[2];  vec0[3] = mat[3];  vec1[0] = mat[4];  vec1[1] = mat[5];  vec1[2] = mat[6];  vec1[3] = mat[7];  vec2[0] = mat[8];  vec2[1] = mat[9];  vec2[2] = mat[10];  vec2[3] = mat[11];  vec3[0] = mat[12];  vec3[1] = mat[13];  vec3[2] = mat[14];  vec3[3] = mat[15];};/** * Sets the row values from the supplied values. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {number} row The index of the row to receive the values. * @param {number} v0 The value for column 0. * @param {number} v1 The value for column 1. * @param {number} v2 The value for column 2. * @param {number} v3 The value for column 3. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setRowValues = function(mat, row, v0, v1, v2, v3) {  mat[row] = v0;  mat[row + 4] = v1;  mat[row + 8] = v2;  mat[row + 12] = v3;  return mat;};/** * Sets the row values from the supplied vector. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the row values. * @param {number} row The index of the row. * @param {!goog.vec.vec4d.Type} vec The vector containing the values. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setRow = function(mat, row, vec) {  mat[row] = vec[0];  mat[row + 4] = vec[1];  mat[row + 8] = vec[2];  mat[row + 12] = vec[3];  return mat;};/** * Retrieves the row values into the given vector. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the values. * @param {number} row The index of the row supplying the values. * @param {!goog.vec.vec4d.Type} vec The vector to receive the row. * @return {!goog.vec.vec4d.Type} return vec so that operations can be *     chained together. */goog.vec.mat4d.getRow = function(mat, row, vec) {  vec[0] = mat[row];  vec[1] = mat[row + 4];  vec[2] = mat[row + 8];  vec[3] = mat[row + 12];  return vec;};/** * Sets the rows of the matrix from the supplied vectors. * * @param {!goog.vec.mat4d.Type} mat The matrix to receive the values. * @param {!goog.vec.vec4d.Type} vec0 The values for row 0. * @param {!goog.vec.vec4d.Type} vec1 The values for row 1. * @param {!goog.vec.vec4d.Type} vec2 The values for row 2. * @param {!goog.vec.vec4d.Type} vec3 The values for row 3. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained together. */goog.vec.mat4d.setRows = function(mat, vec0, vec1, vec2, vec3) {  mat[0] = vec0[0];  mat[1] = vec1[0];  mat[2] = vec2[0];  mat[3] = vec3[0];  mat[4] = vec0[1];  mat[5] = vec1[1];  mat[6] = vec2[1];  mat[7] = vec3[1];  mat[8] = vec0[2];  mat[9] = vec1[2];  mat[10] = vec2[2];  mat[11] = vec3[2];  mat[12] = vec0[3];  mat[13] = vec1[3];  mat[14] = vec2[3];  mat[15] = vec3[3];  return mat;};/** * Retrieves the rows of the matrix into the supplied vectors. * * @param {!goog.vec.mat4d.Type} mat The matrix to supply the values. * @param {!goog.vec.vec4d.Type} vec0 The vector to receive row 0. * @param {!goog.vec.vec4d.Type} vec1 The vector to receive row 1. * @param {!goog.vec.vec4d.Type} vec2 The vector to receive row 2. * @param {!goog.vec.vec4d.Type} vec3 The vector to receive row 3. */goog.vec.mat4d.getRows = function(mat, vec0, vec1, vec2, vec3) {  vec0[0] = mat[0];  vec1[0] = mat[1];  vec2[0] = mat[2];  vec3[0] = mat[3];  vec0[1] = mat[4];  vec1[1] = mat[5];  vec2[1] = mat[6];  vec3[1] = mat[7];  vec0[2] = mat[8];  vec1[2] = mat[9];  vec2[2] = mat[10];  vec3[2] = mat[11];  vec0[3] = mat[12];  vec1[3] = mat[13];  vec2[3] = mat[14];  vec3[3] = mat[15];};/** * Makes the given 4x4 matrix the zero matrix. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @return {!goog.vec.mat4d.Type} return mat so operations can be chained. */goog.vec.mat4d.makeZero = function(mat) {  mat[0] = 0;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = 0;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = 0;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 0;  return mat;};/** * Makes the given 4x4 matrix the identity matrix. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @return {!goog.vec.mat4d.Type} return mat so operations can be chained. */goog.vec.mat4d.makeIdentity = function(mat) {  mat[0] = 1;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = 1;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = 1;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Performs a per-component addition of the matrix mat0 and mat1, storing * the result into resultMat. * * @param {!goog.vec.mat4d.Type} mat0 The first addend. * @param {!goog.vec.mat4d.Type} mat1 The second addend. * @param {!goog.vec.mat4d.Type} resultMat The matrix to *     receive the results (may be either mat0 or mat1). * @return {!goog.vec.mat4d.Type} return resultMat so that operations can be *     chained together. */goog.vec.mat4d.addMat = function(mat0, mat1, resultMat) {  resultMat[0] = mat0[0] + mat1[0];  resultMat[1] = mat0[1] + mat1[1];  resultMat[2] = mat0[2] + mat1[2];  resultMat[3] = mat0[3] + mat1[3];  resultMat[4] = mat0[4] + mat1[4];  resultMat[5] = mat0[5] + mat1[5];  resultMat[6] = mat0[6] + mat1[6];  resultMat[7] = mat0[7] + mat1[7];  resultMat[8] = mat0[8] + mat1[8];  resultMat[9] = mat0[9] + mat1[9];  resultMat[10] = mat0[10] + mat1[10];  resultMat[11] = mat0[11] + mat1[11];  resultMat[12] = mat0[12] + mat1[12];  resultMat[13] = mat0[13] + mat1[13];  resultMat[14] = mat0[14] + mat1[14];  resultMat[15] = mat0[15] + mat1[15];  return resultMat;};/** * Performs a per-component subtraction of the matrix mat0 and mat1, * storing the result into resultMat. * * @param {!goog.vec.mat4d.Type} mat0 The minuend. * @param {!goog.vec.mat4d.Type} mat1 The subtrahend. * @param {!goog.vec.mat4d.Type} resultMat The matrix to receive *     the results (may be either mat0 or mat1). * @return {!goog.vec.mat4d.Type} return resultMat so that operations can be *     chained together. */goog.vec.mat4d.subMat = function(mat0, mat1, resultMat) {  resultMat[0] = mat0[0] - mat1[0];  resultMat[1] = mat0[1] - mat1[1];  resultMat[2] = mat0[2] - mat1[2];  resultMat[3] = mat0[3] - mat1[3];  resultMat[4] = mat0[4] - mat1[4];  resultMat[5] = mat0[5] - mat1[5];  resultMat[6] = mat0[6] - mat1[6];  resultMat[7] = mat0[7] - mat1[7];  resultMat[8] = mat0[8] - mat1[8];  resultMat[9] = mat0[9] - mat1[9];  resultMat[10] = mat0[10] - mat1[10];  resultMat[11] = mat0[11] - mat1[11];  resultMat[12] = mat0[12] - mat1[12];  resultMat[13] = mat0[13] - mat1[13];  resultMat[14] = mat0[14] - mat1[14];  resultMat[15] = mat0[15] - mat1[15];  return resultMat;};/** * Multiplies matrix mat with the given scalar, storing the result * into resultMat. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} scalar The scalar value to multiply to each element of mat. * @param {!goog.vec.mat4d.Type} resultMat The matrix to receive *     the results (may be mat). * @return {!goog.vec.mat4d.Type} return resultMat so that operations can be *     chained together. */goog.vec.mat4d.multScalar = function(mat, scalar, resultMat) {  resultMat[0] = mat[0] * scalar;  resultMat[1] = mat[1] * scalar;  resultMat[2] = mat[2] * scalar;  resultMat[3] = mat[3] * scalar;  resultMat[4] = mat[4] * scalar;  resultMat[5] = mat[5] * scalar;  resultMat[6] = mat[6] * scalar;  resultMat[7] = mat[7] * scalar;  resultMat[8] = mat[8] * scalar;  resultMat[9] = mat[9] * scalar;  resultMat[10] = mat[10] * scalar;  resultMat[11] = mat[11] * scalar;  resultMat[12] = mat[12] * scalar;  resultMat[13] = mat[13] * scalar;  resultMat[14] = mat[14] * scalar;  resultMat[15] = mat[15] * scalar;  return resultMat;};/** * Multiplies the two matrices mat0 and mat1 using matrix multiplication, * storing the result into resultMat. * * @param {!goog.vec.mat4d.Type} mat0 The first (left hand) matrix. * @param {!goog.vec.mat4d.Type} mat1 The second (right hand) matrix. * @param {!goog.vec.mat4d.Type} resultMat The matrix to receive *     the results (may be either mat0 or mat1). * @return {!goog.vec.mat4d.Type} return resultMat so that operations can be *     chained together. */goog.vec.mat4d.multMat = function(mat0, mat1, resultMat) {  var a00 = mat0[0], a10 = mat0[1], a20 = mat0[2], a30 = mat0[3];  var a01 = mat0[4], a11 = mat0[5], a21 = mat0[6], a31 = mat0[7];  var a02 = mat0[8], a12 = mat0[9], a22 = mat0[10], a32 = mat0[11];  var a03 = mat0[12], a13 = mat0[13], a23 = mat0[14], a33 = mat0[15];  var b00 = mat1[0], b10 = mat1[1], b20 = mat1[2], b30 = mat1[3];  var b01 = mat1[4], b11 = mat1[5], b21 = mat1[6], b31 = mat1[7];  var b02 = mat1[8], b12 = mat1[9], b22 = mat1[10], b32 = mat1[11];  var b03 = mat1[12], b13 = mat1[13], b23 = mat1[14], b33 = mat1[15];  resultMat[0] = a00 * b00 + a01 * b10 + a02 * b20 + a03 * b30;  resultMat[1] = a10 * b00 + a11 * b10 + a12 * b20 + a13 * b30;  resultMat[2] = a20 * b00 + a21 * b10 + a22 * b20 + a23 * b30;  resultMat[3] = a30 * b00 + a31 * b10 + a32 * b20 + a33 * b30;  resultMat[4] = a00 * b01 + a01 * b11 + a02 * b21 + a03 * b31;  resultMat[5] = a10 * b01 + a11 * b11 + a12 * b21 + a13 * b31;  resultMat[6] = a20 * b01 + a21 * b11 + a22 * b21 + a23 * b31;  resultMat[7] = a30 * b01 + a31 * b11 + a32 * b21 + a33 * b31;  resultMat[8] = a00 * b02 + a01 * b12 + a02 * b22 + a03 * b32;  resultMat[9] = a10 * b02 + a11 * b12 + a12 * b22 + a13 * b32;  resultMat[10] = a20 * b02 + a21 * b12 + a22 * b22 + a23 * b32;  resultMat[11] = a30 * b02 + a31 * b12 + a32 * b22 + a33 * b32;  resultMat[12] = a00 * b03 + a01 * b13 + a02 * b23 + a03 * b33;  resultMat[13] = a10 * b03 + a11 * b13 + a12 * b23 + a13 * b33;  resultMat[14] = a20 * b03 + a21 * b13 + a22 * b23 + a23 * b33;  resultMat[15] = a30 * b03 + a31 * b13 + a32 * b23 + a33 * b33;  return resultMat;};/** * Transposes the given matrix mat storing the result into resultMat. * * @param {!goog.vec.mat4d.Type} mat The matrix to transpose. * @param {!goog.vec.mat4d.Type} resultMat The matrix to receive *     the results (may be mat). * @return {!goog.vec.mat4d.Type} return resultMat so that operations can be *     chained together. */goog.vec.mat4d.transpose = function(mat, resultMat) {  if (resultMat == mat) {    var a10 = mat[1], a20 = mat[2], a30 = mat[3];    var a21 = mat[6], a31 = mat[7];    var a32 = mat[11];    resultMat[1] = mat[4];    resultMat[2] = mat[8];    resultMat[3] = mat[12];    resultMat[4] = a10;    resultMat[6] = mat[9];    resultMat[7] = mat[13];    resultMat[8] = a20;    resultMat[9] = a21;    resultMat[11] = mat[14];    resultMat[12] = a30;    resultMat[13] = a31;    resultMat[14] = a32;  } else {    resultMat[0] = mat[0];    resultMat[1] = mat[4];    resultMat[2] = mat[8];    resultMat[3] = mat[12];    resultMat[4] = mat[1];    resultMat[5] = mat[5];    resultMat[6] = mat[9];    resultMat[7] = mat[13];    resultMat[8] = mat[2];    resultMat[9] = mat[6];    resultMat[10] = mat[10];    resultMat[11] = mat[14];    resultMat[12] = mat[3];    resultMat[13] = mat[7];    resultMat[14] = mat[11];    resultMat[15] = mat[15];  }  return resultMat;};/** * Computes the determinant of the matrix. * * @param {!goog.vec.mat4d.Type} mat The matrix to compute the matrix for. * @return {number} The determinant of the matrix. */goog.vec.mat4d.determinant = function(mat) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];  var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];  var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];  var m03 = mat[12], m13 = mat[13], m23 = mat[14], m33 = mat[15];  var a0 = m00 * m11 - m10 * m01;  var a1 = m00 * m21 - m20 * m01;  var a2 = m00 * m31 - m30 * m01;  var a3 = m10 * m21 - m20 * m11;  var a4 = m10 * m31 - m30 * m11;  var a5 = m20 * m31 - m30 * m21;  var b0 = m02 * m13 - m12 * m03;  var b1 = m02 * m23 - m22 * m03;  var b2 = m02 * m33 - m32 * m03;  var b3 = m12 * m23 - m22 * m13;  var b4 = m12 * m33 - m32 * m13;  var b5 = m22 * m33 - m32 * m23;  return a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0;};/** * Computes the inverse of mat storing the result into resultMat. If the * inverse is defined, this function returns true, false otherwise. * * @param {!goog.vec.mat4d.Type} mat The matrix to invert. * @param {!goog.vec.mat4d.Type} resultMat The matrix to receive *     the result (may be mat). * @return {boolean} True if the inverse is defined. If false is returned, *     resultMat is not modified. */goog.vec.mat4d.invert = function(mat, resultMat) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];  var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];  var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];  var m03 = mat[12], m13 = mat[13], m23 = mat[14], m33 = mat[15];  var a0 = m00 * m11 - m10 * m01;  var a1 = m00 * m21 - m20 * m01;  var a2 = m00 * m31 - m30 * m01;  var a3 = m10 * m21 - m20 * m11;  var a4 = m10 * m31 - m30 * m11;  var a5 = m20 * m31 - m30 * m21;  var b0 = m02 * m13 - m12 * m03;  var b1 = m02 * m23 - m22 * m03;  var b2 = m02 * m33 - m32 * m03;  var b3 = m12 * m23 - m22 * m13;  var b4 = m12 * m33 - m32 * m13;  var b5 = m22 * m33 - m32 * m23;  var det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0;  if (det == 0) {    return false;  }  var idet = 1.0 / det;  resultMat[0] = (m11 * b5 - m21 * b4 + m31 * b3) * idet;  resultMat[1] = (-m10 * b5 + m20 * b4 - m30 * b3) * idet;  resultMat[2] = (m13 * a5 - m23 * a4 + m33 * a3) * idet;  resultMat[3] = (-m12 * a5 + m22 * a4 - m32 * a3) * idet;  resultMat[4] = (-m01 * b5 + m21 * b2 - m31 * b1) * idet;  resultMat[5] = (m00 * b5 - m20 * b2 + m30 * b1) * idet;  resultMat[6] = (-m03 * a5 + m23 * a2 - m33 * a1) * idet;  resultMat[7] = (m02 * a5 - m22 * a2 + m32 * a1) * idet;  resultMat[8] = (m01 * b4 - m11 * b2 + m31 * b0) * idet;  resultMat[9] = (-m00 * b4 + m10 * b2 - m30 * b0) * idet;  resultMat[10] = (m03 * a4 - m13 * a2 + m33 * a0) * idet;  resultMat[11] = (-m02 * a4 + m12 * a2 - m32 * a0) * idet;  resultMat[12] = (-m01 * b3 + m11 * b1 - m21 * b0) * idet;  resultMat[13] = (m00 * b3 - m10 * b1 + m20 * b0) * idet;  resultMat[14] = (-m03 * a3 + m13 * a1 - m23 * a0) * idet;  resultMat[15] = (m02 * a3 - m12 * a1 + m22 * a0) * idet;  return true;};/** * Returns true if the components of mat0 are equal to the components of mat1. * * @param {!goog.vec.mat4d.Type} mat0 The first matrix. * @param {!goog.vec.mat4d.Type} mat1 The second matrix. * @return {boolean} True if the the two matrices are equivalent. */goog.vec.mat4d.equals = function(mat0, mat1) {  return mat0.length == mat1.length && mat0[0] == mat1[0] &&      mat0[1] == mat1[1] && mat0[2] == mat1[2] && mat0[3] == mat1[3] &&      mat0[4] == mat1[4] && mat0[5] == mat1[5] && mat0[6] == mat1[6] &&      mat0[7] == mat1[7] && mat0[8] == mat1[8] && mat0[9] == mat1[9] &&      mat0[10] == mat1[10] && mat0[11] == mat1[11] && mat0[12] == mat1[12] &&      mat0[13] == mat1[13] && mat0[14] == mat1[14] && mat0[15] == mat1[15];};/** * Transforms the given vector with the given matrix storing the resulting, * transformed vector into resultVec. The input vector is multiplied against the * upper 3x4 matrix omitting the projective component. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the transformation. * @param {!goog.vec.vec3d.Type} vec The 3 element vector to transform. * @param {!goog.vec.vec3d.Type} resultVec The 3 element vector to *     receive the results (may be vec). * @return {!goog.vec.vec3d.Type} return resultVec so that operations can be *     chained together. */goog.vec.mat4d.multVec3 = function(mat, vec, resultVec) {  var x = vec[0], y = vec[1], z = vec[2];  resultVec[0] = x * mat[0] + y * mat[4] + z * mat[8] + mat[12];  resultVec[1] = x * mat[1] + y * mat[5] + z * mat[9] + mat[13];  resultVec[2] = x * mat[2] + y * mat[6] + z * mat[10] + mat[14];  return resultVec;};/** * Transforms the given vector with the given matrix storing the resulting, * transformed vector into resultVec. The input vector is multiplied against the * upper 3x3 matrix omitting the projective component and translation * components. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the transformation. * @param {!goog.vec.vec3d.Type} vec The 3 element vector to transform. * @param {!goog.vec.vec3d.Type} resultVec The 3 element vector to *     receive the results (may be vec). * @return {!goog.vec.vec3d.Type} return resultVec so that operations can be *     chained together. */goog.vec.mat4d.multVec3NoTranslate = function(mat, vec, resultVec) {  var x = vec[0], y = vec[1], z = vec[2];  resultVec[0] = x * mat[0] + y * mat[4] + z * mat[8];  resultVec[1] = x * mat[1] + y * mat[5] + z * mat[9];  resultVec[2] = x * mat[2] + y * mat[6] + z * mat[10];  return resultVec;};/** * Transforms the given vector with the given matrix storing the resulting, * transformed vector into resultVec. The input vector is multiplied against the * full 4x4 matrix with the homogeneous divide applied to reduce the 4 element * vector to a 3 element vector. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the transformation. * @param {!goog.vec.vec3d.Type} vec The 3 element vector to transform. * @param {!goog.vec.vec3d.Type} resultVec The 3 element vector *     to receive the results (may be vec). * @return {!goog.vec.vec3d.Type} return resultVec so that operations can be *     chained together. */goog.vec.mat4d.multVec3Projective = function(mat, vec, resultVec) {  var x = vec[0], y = vec[1], z = vec[2];  var invw = 1 / (x * mat[3] + y * mat[7] + z * mat[11] + mat[15]);  resultVec[0] = (x * mat[0] + y * mat[4] + z * mat[8] + mat[12]) * invw;  resultVec[1] = (x * mat[1] + y * mat[5] + z * mat[9] + mat[13]) * invw;  resultVec[2] = (x * mat[2] + y * mat[6] + z * mat[10] + mat[14]) * invw;  return resultVec;};/** * Transforms the given vector with the given matrix storing the resulting, * transformed vector into resultVec. * * @param {!goog.vec.mat4d.Type} mat The matrix supplying the transformation. * @param {!goog.vec.vec4d.Type} vec The vector to transform. * @param {!goog.vec.vec4d.Type} resultVec The vector to *     receive the results (may be vec). * @return {!goog.vec.vec4d.Type} return resultVec so that operations can be *     chained together. */goog.vec.mat4d.multVec4 = function(mat, vec, resultVec) {  var x = vec[0], y = vec[1], z = vec[2], w = vec[3];  resultVec[0] = x * mat[0] + y * mat[4] + z * mat[8] + w * mat[12];  resultVec[1] = x * mat[1] + y * mat[5] + z * mat[9] + w * mat[13];  resultVec[2] = x * mat[2] + y * mat[6] + z * mat[10] + w * mat[14];  resultVec[3] = x * mat[3] + y * mat[7] + z * mat[11] + w * mat[15];  return resultVec;};/** * Makes the given 4x4 matrix a translation matrix with x, y and z * translation factors. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} x The translation along the x axis. * @param {number} y The translation along the y axis. * @param {number} z The translation along the z axis. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeTranslate = function(mat, x, y, z) {  mat[0] = 1;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = 1;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = 1;  mat[11] = 0;  mat[12] = x;  mat[13] = y;  mat[14] = z;  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix as a scale matrix with x, y and z scale factors. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} x The scale along the x axis. * @param {number} y The scale along the y axis. * @param {number} z The scale along the z axis. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeScale = function(mat, x, y, z) {  mat[0] = x;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = y;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = z;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix a rotation matrix with the given rotation * angle about the axis defined by the vector (ax, ay, az). * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The rotation angle in radians. * @param {number} ax The x component of the rotation axis. * @param {number} ay The y component of the rotation axis. * @param {number} az The z component of the rotation axis. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotate = function(mat, angle, ax, ay, az) {  var c = Math.cos(angle);  var d = 1 - c;  var s = Math.sin(angle);  mat[0] = ax * ax * d + c;  mat[1] = ax * ay * d + az * s;  mat[2] = ax * az * d - ay * s;  mat[3] = 0;  mat[4] = ax * ay * d - az * s;  mat[5] = ay * ay * d + c;  mat[6] = ay * az * d + ax * s;  mat[7] = 0;  mat[8] = ax * az * d + ay * s;  mat[9] = ay * az * d - ax * s;  mat[10] = az * az * d + c;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix a rotation matrix with the given rotation * angle about the X axis. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The rotation angle in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotateX = function(mat, angle) {  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = 1;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = c;  mat[6] = s;  mat[7] = 0;  mat[8] = 0;  mat[9] = -s;  mat[10] = c;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix a rotation matrix with the given rotation * angle about the Y axis. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The rotation angle in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotateY = function(mat, angle) {  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = c;  mat[1] = 0;  mat[2] = -s;  mat[3] = 0;  mat[4] = 0;  mat[5] = 1;  mat[6] = 0;  mat[7] = 0;  mat[8] = s;  mat[9] = 0;  mat[10] = c;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix a rotation matrix with the given rotation * angle about the Z axis. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The rotation angle in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotateZ = function(mat, angle) {  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = c;  mat[1] = s;  mat[2] = 0;  mat[3] = 0;  mat[4] = -s;  mat[5] = c;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = 1;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Creates a matrix from a quaternion rotation and vector translation. * * This is a specialization of makeRotationTranslationScaleOrigin. * * This is equivalent to, but faster than: *     goog.vec.mat4d.makeIdentity(m); *     goog.vec.mat4d.translate(m, tx, ty, tz); *     goog.vec.mat4d.rotate(m, theta, rx, ry, rz); * and: *     goog.vec.Quaternion.toRotationMatrix4(rotation, mat); *     mat[12] = translation[0]; *     mat[13] = translation[1]; *     mat[14] = translation[2]; * See http://jsperf.com/goog-vec-makerotationtranslation2 . * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {!goog.vec.Quaternion.AnyType} rotation The quaternion rotation. *     Note: this quaternion is assumed to already be normalized. * @param {!goog.vec.vec3d.Type} translation The vector translation. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotationTranslation = function(mat, rotation, translation) {  // Quaternion math  var x = rotation[0], y = rotation[1], z = rotation[2], w = rotation[3];  var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;  var xx = x * x2;  var xy = x * y2;  var xz = x * z2;  var yy = y * y2;  var yz = y * z2;  var zz = z * z2;  var wx = w * x2;  var wy = w * y2;  var wz = w * z2;  mat[0] = 1 - (yy + zz);  mat[1] = xy + wz;  mat[2] = xz - wy;  mat[3] = 0;  mat[4] = xy - wz;  mat[5] = 1 - (xx + zz);  mat[6] = yz + wx;  mat[7] = 0;  mat[8] = xz + wy;  mat[9] = yz - wx;  mat[10] = 1 - (xx + yy);  mat[11] = 0;  mat[12] = translation[0];  mat[13] = translation[1];  mat[14] = translation[2];  mat[15] = 1;  return mat;};/** * Creates a matrix from a quaternion rotation, vector translation, and * vector scale. * * This is a specialization of makeRotationTranslationScaleOrigin. * * This is equivalent to, but faster than: *     goog.vec.mat4d.makeIdentity(m); *     goog.vec.mat4d.translate(m, tx, ty, tz); *     goog.vec.mat4d.rotate(m, theta, rx, ry, rz); *     goog.vec.mat4d.scale(m, sx, sy, sz); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {!goog.vec.Quaternion.AnyType} rotation The quaternion rotation. *     Note: this quaternion is assumed to already be normalized. * @param {!goog.vec.vec3d.Type} translation The vector translation. * @param {!goog.vec.vec3d.Type} scale The vector scale. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotationTranslationScale = function(    mat, rotation, translation, scale) {  // Quaternion math  var x = rotation[0], y = rotation[1], z = rotation[2], w = rotation[3];  var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;  var xx = x * x2;  var xy = x * y2;  var xz = x * z2;  var yy = y * y2;  var yz = y * z2;  var zz = z * z2;  var wx = w * x2;  var wy = w * y2;  var wz = w * z2;  var sx = scale[0];  var sy = scale[1];  var sz = scale[2];  mat[0] = (1 - (yy + zz)) * sx;  mat[1] = (xy + wz) * sx;  mat[2] = (xz - wy) * sx;  mat[3] = 0;  mat[4] = (xy - wz) * sy;  mat[5] = (1 - (xx + zz)) * sy;  mat[6] = (yz + wx) * sy;  mat[7] = 0;  mat[8] = (xz + wy) * sz;  mat[9] = (yz - wx) * sz;  mat[10] = (1 - (xx + yy)) * sz;  mat[11] = 0;  mat[12] = translation[0];  mat[13] = translation[1];  mat[14] = translation[2];  mat[15] = 1;  return mat;};/** * Creates a matrix from a quaternion rotation, vector translation, and * vector scale, rotating and scaling about the given origin. * * This is equivalent to, but faster than: *     goog.vec.mat4d.makeIdentity(m); *     goog.vec.mat4d.translate(m, tx, ty, tz); *     goog.vec.mat4d.translate(m, ox, oy, oz); *     goog.vec.mat4d.rotate(m, theta, rx, ry, rz); *     goog.vec.mat4d.scale(m, sx, sy, sz); *     goog.vec.mat4d.translate(m, -ox, -oy, -oz); * See http://jsperf.com/glmatrix-matrix-variant-test/3 for performance * results of a similar function in the glmatrix library. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {!goog.vec.Quaternion.AnyType} rotation The quaternion rotation. *     Note: this quaternion is assumed to already be normalized. * @param {!goog.vec.vec3d.Type} translation The vector translation. * @param {!goog.vec.vec3d.Type} scale The vector scale. * @param {!goog.vec.vec3d.Type} origin The origin about which to scale and *     rotate. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeRotationTranslationScaleOrigin = function(    mat, rotation, translation, scale, origin) {  // Quaternion math  var x = rotation[0], y = rotation[1], z = rotation[2], w = rotation[3];  var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z;  var xx = x * x2;  var xy = x * y2;  var xz = x * z2;  var yy = y * y2;  var yz = y * z2;  var zz = z * z2;  var wx = w * x2;  var wy = w * y2;  var wz = w * z2;  var sx = scale[0];  var sy = scale[1];  var sz = scale[2];  var ox = origin[0];  var oy = origin[1];  var oz = origin[2];  mat[0] = (1 - (yy + zz)) * sx;  mat[1] = (xy + wz) * sx;  mat[2] = (xz - wy) * sx;  mat[3] = 0;  mat[4] = (xy - wz) * sy;  mat[5] = (1 - (xx + zz)) * sy;  mat[6] = (yz + wx) * sy;  mat[7] = 0;  mat[8] = (xz + wy) * sz;  mat[9] = (yz - wx) * sz;  mat[10] = (1 - (xx + yy)) * sz;  mat[11] = 0;  mat[12] = translation[0] + ox - (mat[0] * ox + mat[4] * oy + mat[8] * oz);  mat[13] = translation[1] + oy - (mat[1] * ox + mat[5] * oy + mat[9] * oz);  mat[14] = translation[2] + oz - (mat[2] * ox + mat[6] * oy + mat[10] * oz);  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix a perspective projection matrix. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} left The coordinate of the left clipping plane. * @param {number} right The coordinate of the right clipping plane. * @param {number} bottom The coordinate of the bottom clipping plane. * @param {number} top The coordinate of the top clipping plane. * @param {number} near The distance to the near clipping plane. * @param {number} far The distance to the far clipping plane. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeFrustum = function(    mat, left, right, bottom, top, near, far) {  var x = (2 * near) / (right - left);  var y = (2 * near) / (top - bottom);  var a = (right + left) / (right - left);  var b = (top + bottom) / (top - bottom);  var c = -(far + near) / (far - near);  var d = -(2 * far * near) / (far - near);  mat[0] = x;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = y;  mat[6] = 0;  mat[7] = 0;  mat[8] = a;  mat[9] = b;  mat[10] = c;  mat[11] = -1;  mat[12] = 0;  mat[13] = 0;  mat[14] = d;  mat[15] = 0;  return mat;};/** * Makes the given 4x4 matrix  perspective projection matrix given a * field of view and aspect ratio. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} fovy The field of view along the y (vertical) axis in *     radians. * @param {number} aspect The x (width) to y (height) aspect ratio. * @param {number} near The distance to the near clipping plane. * @param {number} far The distance to the far clipping plane. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makePerspective = function(mat, fovy, aspect, near, far) {  var angle = fovy / 2;  var dz = far - near;  var sinAngle = Math.sin(angle);  if (dz == 0 || sinAngle == 0 || aspect == 0) {    return mat;  }  var cot = Math.cos(angle) / sinAngle;  mat[0] = cot / aspect;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = cot;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = -(far + near) / dz;  mat[11] = -1;  mat[12] = 0;  mat[13] = 0;  mat[14] = -(2 * near * far) / dz;  mat[15] = 0;  return mat;};/** * Makes the given 4x4 matrix an orthographic projection matrix. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} left The coordinate of the left clipping plane. * @param {number} right The coordinate of the right clipping plane. * @param {number} bottom The coordinate of the bottom clipping plane. * @param {number} top The coordinate of the top clipping plane. * @param {number} near The distance to the near clipping plane. * @param {number} far The distance to the far clipping plane. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeOrtho = function(mat, left, right, bottom, top, near, far) {  var x = 2 / (right - left);  var y = 2 / (top - bottom);  var z = -2 / (far - near);  var a = -(right + left) / (right - left);  var b = -(top + bottom) / (top - bottom);  var c = -(far + near) / (far - near);  mat[0] = x;  mat[1] = 0;  mat[2] = 0;  mat[3] = 0;  mat[4] = 0;  mat[5] = y;  mat[6] = 0;  mat[7] = 0;  mat[8] = 0;  mat[9] = 0;  mat[10] = z;  mat[11] = 0;  mat[12] = a;  mat[13] = b;  mat[14] = c;  mat[15] = 1;  return mat;};/** * Makes the given 4x4 matrix a modelview matrix of a camera so that * the camera is 'looking at' the given center point. * * Note that unlike most other goog.vec functions where we inline * everything, this function does not inline various goog.vec * functions.  This makes the code more readable, but somewhat * less efficient. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {!goog.vec.vec3d.Type} eyePt The position of the eye point *     (camera origin). * @param {!goog.vec.vec3d.Type} centerPt The point to aim the camera at. * @param {!goog.vec.vec3d.Type} worldUpVec The vector that identifies *     the up direction for the camera. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeLookAt = function(mat, eyePt, centerPt, worldUpVec) {  // Compute the direction vector from the eye point to the center point and  // normalize.  var fwdVec = goog.vec.mat4d.tmpvec4d_[0];  goog.vec.vec3d.subtract(centerPt, eyePt, fwdVec);  goog.vec.vec3d.normalize(fwdVec, fwdVec);  fwdVec[3] = 0;  // Compute the side vector from the forward vector and the input up vector.  var sideVec = goog.vec.mat4d.tmpvec4d_[1];  goog.vec.vec3d.cross(fwdVec, worldUpVec, sideVec);  goog.vec.vec3d.normalize(sideVec, sideVec);  sideVec[3] = 0;  // Now the up vector to form the orthonormal basis.  var upVec = goog.vec.mat4d.tmpvec4d_[2];  goog.vec.vec3d.cross(sideVec, fwdVec, upVec);  goog.vec.vec3d.normalize(upVec, upVec);  upVec[3] = 0;  // Update the view matrix with the new orthonormal basis and position the  // camera at the given eye point.  goog.vec.vec3d.negate(fwdVec, fwdVec);  goog.vec.mat4d.setRow(mat, 0, sideVec);  goog.vec.mat4d.setRow(mat, 1, upVec);  goog.vec.mat4d.setRow(mat, 2, fwdVec);  goog.vec.mat4d.setRowValues(mat, 3, 0, 0, 0, 1);  goog.vec.mat4d.translate(mat, -eyePt[0], -eyePt[1], -eyePt[2]);  return mat;};/** * Decomposes a matrix into the lookAt vectors eyePt, fwdVec and worldUpVec. * The matrix represents the modelview matrix of a camera. It is the inverse * of lookAt except for the output of the fwdVec instead of centerPt. * The centerPt itself cannot be recovered from a modelview matrix. * * Note that unlike most other goog.vec functions where we inline * everything, this function does not inline various goog.vec * functions.  This makes the code more readable, but somewhat * less efficient. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {!goog.vec.vec3d.Type} eyePt The position of the eye point *     (camera origin). * @param {!goog.vec.vec3d.Type} fwdVec The vector describing where *     the camera points to. * @param {!goog.vec.vec3d.Type} worldUpVec The vector that *     identifies the up direction for the camera. * @return {boolean} True if the method succeeds, false otherwise. *     The method can only fail if the inverse of viewMatrix is not defined. */goog.vec.mat4d.toLookAt = function(mat, eyePt, fwdVec, worldUpVec) {  // Get eye of the camera.  var matInverse = goog.vec.mat4d.tmpmat4d_[0];  if (!goog.vec.mat4d.invert(mat, matInverse)) {    // The input matrix does not have a valid inverse.    return false;  }  if (eyePt) {    eyePt[0] = matInverse[12];    eyePt[1] = matInverse[13];    eyePt[2] = matInverse[14];  }  // Get forward vector from the definition of lookAt.  if (fwdVec || worldUpVec) {    if (!fwdVec) {      fwdVec = goog.vec.mat4d.tmpvec3d_[0];    }    fwdVec[0] = -mat[2];    fwdVec[1] = -mat[6];    fwdVec[2] = -mat[10];    // Normalize forward vector.    goog.vec.vec3d.normalize(fwdVec, fwdVec);  }  if (worldUpVec) {    // Get side vector from the definition of gluLookAt.    var side = goog.vec.mat4d.tmpvec3d_[1];    side[0] = mat[0];    side[1] = mat[4];    side[2] = mat[8];    // Compute up vector as a up = side x forward.    goog.vec.vec3d.cross(side, fwdVec, worldUpVec);    // Normalize up vector.    goog.vec.vec3d.normalize(worldUpVec, worldUpVec);  }  return true;};/** * Makes the given 4x4 matrix a rotation matrix given Euler angles using * the ZXZ convention. * Given the euler angles [theta1, theta2, theta3], the rotation is defined as * rotation = rotation_z(theta1) * rotation_x(theta2) * rotation_z(theta3), * with theta1 in [0, 2 * pi], theta2 in [0, pi] and theta3 in [0, 2 * pi]. * rotation_x(theta) means rotation around the X axis of theta radians, * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} theta1 The angle of rotation around the Z axis in radians. * @param {number} theta2 The angle of rotation around the X axis in radians. * @param {number} theta3 The angle of rotation around the Z axis in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.makeEulerZXZ = function(mat, theta1, theta2, theta3) {  var c1 = Math.cos(theta1);  var s1 = Math.sin(theta1);  var c2 = Math.cos(theta2);  var s2 = Math.sin(theta2);  var c3 = Math.cos(theta3);  var s3 = Math.sin(theta3);  mat[0] = c1 * c3 - c2 * s1 * s3;  mat[1] = c2 * c1 * s3 + c3 * s1;  mat[2] = s3 * s2;  mat[3] = 0;  mat[4] = -c1 * s3 - c3 * c2 * s1;  mat[5] = c1 * c2 * c3 - s1 * s3;  mat[6] = c3 * s2;  mat[7] = 0;  mat[8] = s2 * s1;  mat[9] = -c1 * s2;  mat[10] = c2;  mat[11] = 0;  mat[12] = 0;  mat[13] = 0;  mat[14] = 0;  mat[15] = 1;  return mat;};/** * Decomposes a rotation matrix into Euler angles using the ZXZ convention so * that rotation = rotation_z(theta1) * rotation_x(theta2) * rotation_z(theta3), * with theta1 in [0, 2 * pi], theta2 in [0, pi] and theta3 in [0, 2 * pi]. * rotation_x(theta) means rotation around the X axis of theta radians. * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {!goog.vec.vec3d.Type} euler The ZXZ Euler angles in *     radians as [theta1, theta2, theta3]. * @param {boolean=} opt_theta2IsNegative Whether theta2 is in [-pi, 0] instead *     of the default [0, pi]. * @return {!goog.vec.vec4d.Type} return euler so that operations can be *     chained together. */goog.vec.mat4d.toEulerZXZ = function(mat, euler, opt_theta2IsNegative) {  // There is an ambiguity in the sign of sinTheta2 because of the sqrt.  var sinTheta2 = Math.sqrt(mat[2] * mat[2] + mat[6] * mat[6]);  // By default we explicitely constrain theta2 to be in [0, pi],  // so sinTheta2 is always positive. We can change the behavior and specify  // theta2 to be negative in [-pi, 0] with opt_Theta2IsNegative.  var signTheta2 = opt_theta2IsNegative ? -1 : 1;  if (sinTheta2 > goog.vec.EPSILON) {    euler[2] = Math.atan2(mat[2] * signTheta2, mat[6] * signTheta2);    euler[1] = Math.atan2(sinTheta2 * signTheta2, mat[10]);    euler[0] = Math.atan2(mat[8] * signTheta2, -mat[9] * signTheta2);  } else {    // There is also an arbitrary choice for theta1 = 0 or theta2 = 0 here.    // We assume theta1 = 0 as some applications do not allow the camera to roll    // (i.e. have theta1 != 0).    euler[0] = 0;    euler[1] = Math.atan2(sinTheta2 * signTheta2, mat[10]);    euler[2] = Math.atan2(mat[1], mat[0]);  }  // Atan2 outputs angles in [-pi, pi] so we bring them back to [0, 2 * pi].  euler[0] = (euler[0] + Math.PI * 2) % (Math.PI * 2);  euler[2] = (euler[2] + Math.PI * 2) % (Math.PI * 2);  // For theta2 we want the angle to be in [0, pi] or [-pi, 0] depending on  // signTheta2.  euler[1] =      ((euler[1] * signTheta2 + Math.PI * 2) % (Math.PI * 2)) * signTheta2;  return euler;};/** * Translates the given matrix by x,y,z.  Equvialent to: * goog.vec.mat4d.multMat( *     mat, *     goog.vec.mat4d.makeTranslate(goog.vec.mat4d.create(), x, y, z), *     mat); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} x The translation along the x axis. * @param {number} y The translation along the y axis. * @param {number} z The translation along the z axis. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.translate = function(mat, x, y, z) {  mat[12] += mat[0] * x + mat[4] * y + mat[8] * z;  mat[13] += mat[1] * x + mat[5] * y + mat[9] * z;  mat[14] += mat[2] * x + mat[6] * y + mat[10] * z;  mat[15] += mat[3] * x + mat[7] * y + mat[11] * z;  return mat;};/** * Scales the given matrix by x,y,z.  Equivalent to: * goog.vec.mat4d.multMat( *     mat, *     goog.vec.mat4d.makeScale(goog.vec.mat4d.create(), x, y, z), *     mat); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} x The x scale factor. * @param {number} y The y scale factor. * @param {number} z The z scale factor. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.scale = function(mat, x, y, z) {  mat[0] = mat[0] * x;  mat[1] = mat[1] * x;  mat[2] = mat[2] * x;  mat[3] = mat[3] * x;  mat[4] = mat[4] * y;  mat[5] = mat[5] * y;  mat[6] = mat[6] * y;  mat[7] = mat[7] * y;  mat[8] = mat[8] * z;  mat[9] = mat[9] * z;  mat[10] = mat[10] * z;  mat[11] = mat[11] * z;  mat[12] = mat[12];  mat[13] = mat[13];  mat[14] = mat[14];  mat[15] = mat[15];  return mat;};/** * Rotate the given matrix by angle about the x,y,z axis.  Equivalent to: * goog.vec.mat4d.multMat( *     mat, *     goog.vec.mat4d.makeRotate(goog.vec.mat4d.create(), angle, x, y, z), *     mat); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The angle in radians. * @param {number} x The x component of the rotation axis. * @param {number} y The y component of the rotation axis. * @param {number} z The z component of the rotation axis. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.rotate = function(mat, angle, x, y, z) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];  var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];  var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];  var cosAngle = Math.cos(angle);  var sinAngle = Math.sin(angle);  var diffCosAngle = 1 - cosAngle;  var r00 = x * x * diffCosAngle + cosAngle;  var r10 = x * y * diffCosAngle + z * sinAngle;  var r20 = x * z * diffCosAngle - y * sinAngle;  var r01 = x * y * diffCosAngle - z * sinAngle;  var r11 = y * y * diffCosAngle + cosAngle;  var r21 = y * z * diffCosAngle + x * sinAngle;  var r02 = x * z * diffCosAngle + y * sinAngle;  var r12 = y * z * diffCosAngle - x * sinAngle;  var r22 = z * z * diffCosAngle + cosAngle;  mat[0] = m00 * r00 + m01 * r10 + m02 * r20;  mat[1] = m10 * r00 + m11 * r10 + m12 * r20;  mat[2] = m20 * r00 + m21 * r10 + m22 * r20;  mat[3] = m30 * r00 + m31 * r10 + m32 * r20;  mat[4] = m00 * r01 + m01 * r11 + m02 * r21;  mat[5] = m10 * r01 + m11 * r11 + m12 * r21;  mat[6] = m20 * r01 + m21 * r11 + m22 * r21;  mat[7] = m30 * r01 + m31 * r11 + m32 * r21;  mat[8] = m00 * r02 + m01 * r12 + m02 * r22;  mat[9] = m10 * r02 + m11 * r12 + m12 * r22;  mat[10] = m20 * r02 + m21 * r12 + m22 * r22;  mat[11] = m30 * r02 + m31 * r12 + m32 * r22;  return mat;};/** * Rotate the given matrix by angle about the x axis.  Equivalent to: * goog.vec.mat4d.multMat( *     mat, *     goog.vec.mat4d.makeRotateX(goog.vec.mat4d.create(), angle), *     mat); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The angle in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.rotateX = function(mat, angle) {  var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];  var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[4] = m01 * c + m02 * s;  mat[5] = m11 * c + m12 * s;  mat[6] = m21 * c + m22 * s;  mat[7] = m31 * c + m32 * s;  mat[8] = m01 * -s + m02 * c;  mat[9] = m11 * -s + m12 * c;  mat[10] = m21 * -s + m22 * c;  mat[11] = m31 * -s + m32 * c;  return mat;};/** * Rotate the given matrix by angle about the y axis.  Equivalent to: * goog.vec.mat4d.multMat( *     mat, *     goog.vec.mat4d.makeRotateY(goog.vec.mat4d.create(), angle), *     mat); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The angle in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.rotateY = function(mat, angle) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];  var m02 = mat[8], m12 = mat[9], m22 = mat[10], m32 = mat[11];  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = m00 * c + m02 * -s;  mat[1] = m10 * c + m12 * -s;  mat[2] = m20 * c + m22 * -s;  mat[3] = m30 * c + m32 * -s;  mat[8] = m00 * s + m02 * c;  mat[9] = m10 * s + m12 * c;  mat[10] = m20 * s + m22 * c;  mat[11] = m30 * s + m32 * c;  return mat;};/** * Rotate the given matrix by angle about the z axis.  Equivalent to: * goog.vec.mat4d.multMat( *     mat, *     goog.vec.mat4d.makeRotateZ(goog.vec.mat4d.create(), angle), *     mat); * * @param {!goog.vec.mat4d.Type} mat The matrix. * @param {number} angle The angle in radians. * @return {!goog.vec.mat4d.Type} return mat so that operations can be *     chained. */goog.vec.mat4d.rotateZ = function(mat, angle) {  var m00 = mat[0], m10 = mat[1], m20 = mat[2], m30 = mat[3];  var m01 = mat[4], m11 = mat[5], m21 = mat[6], m31 = mat[7];  var c = Math.cos(angle);  var s = Math.sin(angle);  mat[0] = m00 * c + m01 * s;  mat[1] = m10 * c + m11 * s;  mat[2] = m20 * c + m21 * s;  mat[3] = m30 * c + m31 * s;  mat[4] = m00 * -s + m01 * c;  mat[5] = m10 * -s + m11 * c;  mat[6] = m20 * -s + m21 * c;  mat[7] = m30 * -s + m31 * c;  return mat;};/** * Retrieves the translation component of the transformation matrix. * * @param {!goog.vec.mat4d.Type} mat The transformation matrix. * @param {!goog.vec.vec3d.Type} translation The vector for storing the *     result. * @return {!goog.vec.vec3d.Type} return translation so that operations can be *     chained. */goog.vec.mat4d.getTranslation = function(mat, translation) {  translation[0] = mat[12];  translation[1] = mat[13];  translation[2] = mat[14];  return translation;};/** * @type {Array<goog.vec.vec3d.Type>} * @private */goog.vec.mat4d.tmpvec3d_ = [goog.vec.vec3d.create(), goog.vec.vec3d.create()];/** * @type {Array<goog.vec.vec4d.Type>} * @private */goog.vec.mat4d.tmpvec4d_ =    [goog.vec.vec4d.create(), goog.vec.vec4d.create(), goog.vec.vec4d.create()];/** * @type {Array<goog.vec.mat4d.Type>} * @private */goog.vec.mat4d.tmpmat4d_ = [goog.vec.mat4d.create()];
 |