(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o= 7.0 and in ASCII or to be any version in Binary format. * * Supports: * Mesh Generation (Positional Data) * Normal Data (Per Vertex Drawing Instance) * UV Data (Per Vertex Drawing Instance) * Skinning * Animation * - Separated Animations based on stacks. * - Skeletal & Non-Skeletal Animations * NURBS (Open, Closed and Periodic forms) * * Needs Support: * Indexed Buffers * PreRotation support. */ ( function () { /** * Generates a loader for loading FBX files from URL and parsing into * a THREE.Group. * @param {THREE.LoadingManager} manager - Loading Manager for loader to use. */ module.exports = THREE.FBXLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; Object.assign( THREE.FBXLoader.prototype, { /** * Loads an ASCII/Binary FBX file from URL and parses into a THREE.Group. * THREE.Group will have an animations property of AnimationClips * of the different animations exported with the FBX. * @param {string} url - URL of the FBX file. * @param {function(THREE.Group):void} onLoad - Callback for when FBX file is loaded and parsed. * @param {function(ProgressEvent):void} onProgress - Callback fired periodically when file is being retrieved from server. * @param {function(Event):void} onError - Callback fired when error occurs (Currently only with retrieving file, not with parsing errors). */ load: function ( url, onLoad, onProgress, onError ) { var self = this; var resourceDirectory = THREE.Loader.prototype.extractUrlBase( url ); var loader = new THREE.FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { try { var scene = self.parse( buffer, resourceDirectory ); onLoad( scene ); } catch ( error ) { window.setTimeout( function () { if ( onError ) onError( error ); self.manager.itemError( url ); }, 0 ); } }, onProgress, onError ); }, /** * Parses an ASCII/Binary FBX file and returns a THREE.Group. * THREE.Group will have an animations property of AnimationClips * of the different animations within the FBX file. * @param {ArrayBuffer} FBXBuffer - Contents of FBX file to parse. * @param {string} resourceDirectory - Directory to load external assets (e.g. textures ) from. * @returns {THREE.Group} */ parse: function ( FBXBuffer, resourceDirectory ) { var FBXTree; if ( isFbxFormatBinary( FBXBuffer ) ) { FBXTree = new BinaryParser().parse( FBXBuffer ); } else { var FBXText = convertArrayBufferToString( FBXBuffer ); if ( ! isFbxFormatASCII( FBXText ) ) { throw new Error( 'THREE.FBXLoader: Unknown format.' ); } if ( getFbxVersion( FBXText ) < 7000 ) { throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); } FBXTree = new TextParser().parse( FBXText ); } // console.log( FBXTree ); var connections = parseConnections( FBXTree ); var images = parseImages( FBXTree ); var textures = parseTextures( FBXTree, new THREE.TextureLoader( this.manager ).setPath( resourceDirectory ), images, connections ); var materials = parseMaterials( FBXTree, textures, connections ); var deformers = parseDeformers( FBXTree, connections ); var geometryMap = parseGeometries( FBXTree, connections, deformers ); var sceneGraph = parseScene( FBXTree, connections, deformers, geometryMap, materials ); return sceneGraph; } } ); /** * Parses map of relationships between objects. * @param {{Connections: { properties: { connections: [number, number, string][]}}}} FBXTree * @returns {Map} */ function parseConnections( FBXTree ) { /** * @type {Map} */ var connectionMap = new Map(); if ( 'Connections' in FBXTree ) { /** * @type {[number, number, string][]} */ var connectionArray = FBXTree.Connections.properties.connections; for ( var connectionArrayIndex = 0, connectionArrayLength = connectionArray.length; connectionArrayIndex < connectionArrayLength; ++ connectionArrayIndex ) { var connection = connectionArray[ connectionArrayIndex ]; if ( ! connectionMap.has( connection[ 0 ] ) ) { connectionMap.set( connection[ 0 ], { parents: [], children: [] } ); } var parentRelationship = { ID: connection[ 1 ], relationship: connection[ 2 ] }; connectionMap.get( connection[ 0 ] ).parents.push( parentRelationship ); if ( ! connectionMap.has( connection[ 1 ] ) ) { connectionMap.set( connection[ 1 ], { parents: [], children: [] } ); } var childRelationship = { ID: connection[ 0 ], relationship: connection[ 2 ] }; connectionMap.get( connection[ 1 ] ).children.push( childRelationship ); } } return connectionMap; } /** * Parses map of images referenced in FBXTree. * @param {{Objects: {subNodes: {Texture: Object.}}}} FBXTree * @returns {Map} */ function parseImages( FBXTree ) { /** * @type {Map} */ var imageMap = new Map(); if ( 'Video' in FBXTree.Objects.subNodes ) { var videoNodes = FBXTree.Objects.subNodes.Video; for ( var nodeID in videoNodes ) { var videoNode = videoNodes[ nodeID ]; // raw image data is in videoNode.properties.Content if ( 'Content' in videoNode.properties ) { var image = parseImage( videoNodes[ nodeID ] ); imageMap.set( parseInt( nodeID ), image ); } } } return imageMap; } /** * @param {videoNode} videoNode - Node to get texture image information from. * @returns {string} - image blob/data URL */ function parseImage( videoNode ) { var content = videoNode.properties.Content; var fileName = videoNode.properties.RelativeFilename || videoNode.properties.Filename; var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); var type; switch ( extension ) { case 'bmp': type = 'image/bmp'; break; case 'jpg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; default: console.warn( 'FBXLoader: No support image type ' + extension ); return; } if ( typeof content === 'string' ) { return 'data:' + type + ';base64,' + content; } else { var array = new Uint8Array( content ); return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); } } /** * Parses map of textures referenced in FBXTree. * @param {{Objects: {subNodes: {Texture: Object.}}}} FBXTree * @param {THREE.TextureLoader} loader * @param {Map} imageMap * @param {Map} connections * @returns {Map} */ function parseTextures( FBXTree, loader, imageMap, connections ) { /** * @type {Map} */ var textureMap = new Map(); if ( 'Texture' in FBXTree.Objects.subNodes ) { var textureNodes = FBXTree.Objects.subNodes.Texture; for ( var nodeID in textureNodes ) { var texture = parseTexture( textureNodes[ nodeID ], loader, imageMap, connections ); textureMap.set( parseInt( nodeID ), texture ); } } return textureMap; } /** * @param {textureNode} textureNode - Node to get texture information from. * @param {THREE.TextureLoader} loader * @param {Map} imageMap * @param {Map} connections * @returns {THREE.Texture} */ function parseTexture( textureNode, loader, imageMap, connections ) { var FBX_ID = textureNode.id; var name = textureNode.name; var fileName; var filePath = textureNode.properties.FileName; var relativeFilePath = textureNode.properties.RelativeFilename; var children = connections.get( FBX_ID ).children; if ( children !== undefined && children.length > 0 && imageMap.has( children[ 0 ].ID ) ) { fileName = imageMap.get( children[ 0 ].ID ); } else if ( relativeFilePath !== undefined && relativeFilePath[ 0 ] !== '/' && relativeFilePath.match( /^[a-zA-Z]:/ ) === null ) { // use textureNode.properties.RelativeFilename // if it exists and it doesn't seem an absolute path fileName = relativeFilePath; } else { var split = filePath.split( /[\\\/]/ ); if ( split.length > 0 ) { fileName = split[ split.length - 1 ]; } else { fileName = filePath; } } var currentPath = loader.path; if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { loader.setPath( undefined ); } /** * @type {THREE.Texture} */ var texture = loader.load( fileName ); texture.name = name; texture.FBX_ID = FBX_ID; var wrapModeU = textureNode.properties.WrapModeU; var wrapModeV = textureNode.properties.WrapModeV; var valueU = wrapModeU !== undefined ? wrapModeU.value : 0; var valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; loader.setPath( currentPath ); return texture; } /** * Parses map of Material information. * @param {{Objects: {subNodes: {Material: Object.}}}} FBXTree * @param {Map} textureMap * @param {Map} connections * @returns {Map} */ function parseMaterials( FBXTree, textureMap, connections ) { var materialMap = new Map(); if ( 'Material' in FBXTree.Objects.subNodes ) { var materialNodes = FBXTree.Objects.subNodes.Material; for ( var nodeID in materialNodes ) { var material = parseMaterial( materialNodes[ nodeID ], textureMap, connections ); if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); } } return materialMap; } /** * Takes information from Material node and returns a generated THREE.Material * @param {FBXMaterialNode} materialNode * @param {Map} textureMap * @param {Map} connections * @returns {THREE.Material} */ function parseMaterial( materialNode, textureMap, connections ) { var FBX_ID = materialNode.id; var name = materialNode.attrName; var type = materialNode.properties.ShadingModel; //Case where FBXs wrap shading model in property object. if ( typeof type === 'object' ) { type = type.value; } // Seems like FBX can include unused materials which don't have any connections. // Ignores them so far. if ( ! connections.has( FBX_ID ) ) return null; var children = connections.get( FBX_ID ).children; var parameters = parseParameters( materialNode.properties, textureMap, children ); var material; switch ( type.toLowerCase() ) { case 'phong': material = new THREE.MeshPhongMaterial(); break; case 'lambert': material = new THREE.MeshLambertMaterial(); break; default: console.warn( 'THREE.FBXLoader: No implementation given for material type %s in FBXLoader.js. Defaulting to standard material.', type ); material = new THREE.MeshStandardMaterial( { color: 0x3300ff } ); break; } material.setValues( parameters ); material.name = name; return material; } /** * @typedef {{Diffuse: FBXVector3, Specular: FBXVector3, Shininess: FBXValue, Emissive: FBXVector3, EmissiveFactor: FBXValue, Opacity: FBXValue}} FBXMaterialProperties */ /** * @typedef {{color: THREE.Color=, specular: THREE.Color=, shininess: number=, emissive: THREE.Color=, emissiveIntensity: number=, opacity: number=, transparent: boolean=, map: THREE.Texture=}} THREEMaterialParameterPack */ /** * @param {FBXMaterialProperties} properties * @param {Map} textureMap * @param {{ID: number, relationship: string}[]} childrenRelationships * @returns {THREEMaterialParameterPack} */ function parseParameters( properties, textureMap, childrenRelationships ) { var parameters = {}; if ( properties.Diffuse ) { parameters.color = parseColor( properties.Diffuse ); } if ( properties.Specular ) { parameters.specular = parseColor( properties.Specular ); } if ( properties.Shininess ) { parameters.shininess = properties.Shininess.value; } if ( properties.Emissive ) { parameters.emissive = parseColor( properties.Emissive ); } if ( properties.EmissiveFactor ) { parameters.emissiveIntensity = properties.EmissiveFactor.value; } if ( properties.Opacity ) { parameters.opacity = properties.Opacity.value; } if ( parameters.opacity < 1.0 ) { parameters.transparent = true; } for ( var childrenRelationshipsIndex = 0, childrenRelationshipsLength = childrenRelationships.length; childrenRelationshipsIndex < childrenRelationshipsLength; ++ childrenRelationshipsIndex ) { var relationship = childrenRelationships[ childrenRelationshipsIndex ]; var type = relationship.relationship; switch ( type ) { case 'DiffuseColor': case ' "DiffuseColor': parameters.map = textureMap.get( relationship.ID ); break; case 'Bump': case ' "Bump': parameters.bumpMap = textureMap.get( relationship.ID ); break; case 'NormalMap': case ' "NormalMap': parameters.normalMap = textureMap.get( relationship.ID ); break; case 'AmbientColor': case 'EmissiveColor': case ' "AmbientColor': case ' "EmissiveColor': default: console.warn( 'THREE.FBXLoader: Unknown texture application of type %s, skipping texture.', type ); break; } } return parameters; } /** * Generates map of Skeleton-like objects for use later when generating and binding skeletons. * @param {{Objects: {subNodes: {Deformer: Object.}}}} FBXTree * @param {Map} connections * @returns {Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[], skeleton: THREE.Skeleton|null}>} */ function parseDeformers( FBXTree, connections ) { var deformers = {}; if ( 'Deformer' in FBXTree.Objects.subNodes ) { var DeformerNodes = FBXTree.Objects.subNodes.Deformer; for ( var nodeID in DeformerNodes ) { var deformerNode = DeformerNodes[ nodeID ]; if ( deformerNode.attrType === 'Skin' ) { var conns = connections.get( parseInt( nodeID ) ); var skeleton = parseSkeleton( conns, DeformerNodes ); skeleton.FBX_ID = parseInt( nodeID ); deformers[ nodeID ] = skeleton; } } } return deformers; } /** * Generates a "Skeleton Representation" of FBX nodes based on an FBX Skin Deformer's connections and an object containing SubDeformer nodes. * @param {{parents: {ID: number, relationship: string}[], children: {ID: number, relationship: string}[]}} connections * @param {Object.} DeformerNodes * @returns {{map: Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[], skeleton: THREE.Skeleton|null}} */ function parseSkeleton( connections, DeformerNodes ) { var subDeformers = {}; var children = connections.children; for ( var i = 0, l = children.length; i < l; ++ i ) { var child = children[ i ]; var subDeformerNode = DeformerNodes[ child.ID ]; var subDeformer = { FBX_ID: child.ID, index: i, indices: [], weights: [], transform: parseMatrixArray( subDeformerNode.subNodes.Transform.properties.a ), transformLink: parseMatrixArray( subDeformerNode.subNodes.TransformLink.properties.a ), linkMode: subDeformerNode.properties.Mode }; if ( 'Indexes' in subDeformerNode.subNodes ) { subDeformer.indices = parseIntArray( subDeformerNode.subNodes.Indexes.properties.a ); subDeformer.weights = parseFloatArray( subDeformerNode.subNodes.Weights.properties.a ); } subDeformers[ child.ID ] = subDeformer; } return { map: subDeformers, bones: [] }; } /** * Generates Buffer geometries from geometry information in FBXTree, and generates map of THREE.BufferGeometries * @param {{Objects: {subNodes: {Geometry: Object.} connections * @param {Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[], skeleton: THREE.Skeleton|null}>} deformers * @returns {Map} */ function parseGeometries( FBXTree, connections, deformers ) { var geometryMap = new Map(); if ( 'Geometry' in FBXTree.Objects.subNodes ) { var geometryNodes = FBXTree.Objects.subNodes.Geometry; for ( var nodeID in geometryNodes ) { var relationships = connections.get( parseInt( nodeID ) ); var geo = parseGeometry( geometryNodes[ nodeID ], relationships, deformers ); geometryMap.set( parseInt( nodeID ), geo ); } } return geometryMap; } /** * Generates BufferGeometry from FBXGeometryNode. * @param {FBXGeometryNode} geometryNode * @param {{parents: {ID: number, relationship: string}[], children: {ID: number, relationship: string}[]}} relationships * @param {Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[]}>} deformers * @returns {THREE.BufferGeometry} */ function parseGeometry( geometryNode, relationships, deformers ) { switch ( geometryNode.attrType ) { case 'Mesh': return parseMeshGeometry( geometryNode, relationships, deformers ); break; case 'NurbsCurve': return parseNurbsGeometry( geometryNode ); break; } } /** * Specialty function for parsing Mesh based Geometry Nodes. * @param {FBXGeometryNode} geometryNode * @param {{parents: {ID: number, relationship: string}[], children: {ID: number, relationship: string}[]}} relationships - Object representing relationships between specific geometry node and other nodes. * @param {Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[]}>} deformers - Map object of deformers and subDeformers by ID. * @returns {THREE.BufferGeometry} */ function parseMeshGeometry( geometryNode, relationships, deformers ) { for ( var i = 0; i < relationships.children.length; ++ i ) { var deformer = deformers[ relationships.children[ i ].ID ]; if ( deformer !== undefined ) break; } return genGeometry( geometryNode, deformer ); } /** * @param {{map: Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[]}} deformer - Skeleton representation for geometry instance. * @returns {THREE.BufferGeometry} */ function genGeometry( geometryNode, deformer ) { var geometry = new Geometry(); var subNodes = geometryNode.subNodes; // First, each index is going to be its own vertex. var vertexBuffer = parseFloatArray( subNodes.Vertices.properties.a ); var indexBuffer = parseIntArray( subNodes.PolygonVertexIndex.properties.a ); if ( subNodes.LayerElementNormal ) { var normalInfo = getNormals( subNodes.LayerElementNormal[ 0 ] ); } if ( subNodes.LayerElementUV ) { var uvInfo = getUVs( subNodes.LayerElementUV[ 0 ] ); } if ( subNodes.LayerElementColor ) { var colorInfo = getColors( subNodes.LayerElementColor[ 0 ] ); } if ( subNodes.LayerElementMaterial ) { var materialInfo = getMaterials( subNodes.LayerElementMaterial[ 0 ] ); } var weightTable = {}; if ( deformer ) { var subDeformers = deformer.map; for ( var key in subDeformers ) { var subDeformer = subDeformers[ key ]; var indices = subDeformer.indices; for ( var j = 0; j < indices.length; j ++ ) { var index = indices[ j ]; var weight = subDeformer.weights[ j ]; if ( weightTable[ index ] === undefined ) weightTable[ index ] = []; weightTable[ index ].push( { id: subDeformer.index, weight: weight } ); } } } var faceVertexBuffer = []; var polygonIndex = 0; var displayedWeightsWarning = false; for ( var polygonVertexIndex = 0; polygonVertexIndex < indexBuffer.length; polygonVertexIndex ++ ) { var vertexIndex = indexBuffer[ polygonVertexIndex ]; var endOfFace = false; if ( vertexIndex < 0 ) { vertexIndex = vertexIndex ^ - 1; indexBuffer[ polygonVertexIndex ] = vertexIndex; endOfFace = true; } var vertex = new Vertex(); var weightIndices = []; var weights = []; vertex.position.fromArray( vertexBuffer, vertexIndex * 3 ); if ( deformer ) { if ( weightTable[ vertexIndex ] !== undefined ) { var array = weightTable[ vertexIndex ]; for ( var j = 0, jl = array.length; j < jl; j ++ ) { weights.push( array[ j ].weight ); weightIndices.push( array[ j ].id ); } } if ( weights.length > 4 ) { if ( ! displayedWeightsWarning ) { console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); displayedWeightsWarning = true; } var WIndex = [ 0, 0, 0, 0 ]; var Weight = [ 0, 0, 0, 0 ]; weights.forEach( function ( weight, weightIndex ) { var currentWeight = weight; var currentIndex = weightIndices[ weightIndex ]; Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { if ( currentWeight > comparedWeight ) { comparedWeightArray[ comparedWeightIndex ] = currentWeight; currentWeight = comparedWeight; var tmp = WIndex[ comparedWeightIndex ]; WIndex[ comparedWeightIndex ] = currentIndex; currentIndex = tmp; } } ); } ); weightIndices = WIndex; weights = Weight; } for ( var i = weights.length; i < 4; ++ i ) { weights[ i ] = 0; weightIndices[ i ] = 0; } vertex.skinWeights.fromArray( weights ); vertex.skinIndices.fromArray( weightIndices ); } if ( normalInfo ) { vertex.normal.fromArray( getData( polygonVertexIndex, polygonIndex, vertexIndex, normalInfo ) ); } if ( uvInfo ) { vertex.uv.fromArray( getData( polygonVertexIndex, polygonIndex, vertexIndex, uvInfo ) ); } if ( colorInfo ) { vertex.color.fromArray( getData( polygonVertexIndex, polygonIndex, vertexIndex, colorInfo ) ); } faceVertexBuffer.push( vertex ); if ( endOfFace ) { var face = new Face(); face.genTrianglesFromVertices( faceVertexBuffer ); if ( materialInfo !== undefined ) { var materials = getData( polygonVertexIndex, polygonIndex, vertexIndex, materialInfo ); face.materialIndex = materials[ 0 ]; } else { // Seems like some models don't have materialInfo(subNodes.LayerElementMaterial). // Set 0 in such a case. face.materialIndex = 0; } geometry.faces.push( face ); faceVertexBuffer = []; polygonIndex ++; endOfFace = false; } } /** * @type {{vertexBuffer: number[], normalBuffer: number[], uvBuffer: number[], skinIndexBuffer: number[], skinWeightBuffer: number[], materialIndexBuffer: number[]}} */ var bufferInfo = geometry.flattenToBuffers(); var geo = new THREE.BufferGeometry(); geo.name = geometryNode.name; geo.addAttribute( 'position', new THREE.Float32BufferAttribute( bufferInfo.vertexBuffer, 3 ) ); if ( bufferInfo.normalBuffer.length > 0 ) { geo.addAttribute( 'normal', new THREE.Float32BufferAttribute( bufferInfo.normalBuffer, 3 ) ); } if ( bufferInfo.uvBuffer.length > 0 ) { geo.addAttribute( 'uv', new THREE.Float32BufferAttribute( bufferInfo.uvBuffer, 2 ) ); } if ( subNodes.LayerElementColor ) { geo.addAttribute( 'color', new THREE.Float32BufferAttribute( bufferInfo.colorBuffer, 3 ) ); } if ( deformer ) { geo.addAttribute( 'skinIndex', new THREE.Float32BufferAttribute( bufferInfo.skinIndexBuffer, 4 ) ); geo.addAttribute( 'skinWeight', new THREE.Float32BufferAttribute( bufferInfo.skinWeightBuffer, 4 ) ); geo.FBX_Deformer = deformer; } // Convert the material indices of each vertex into rendering groups on the geometry. var materialIndexBuffer = bufferInfo.materialIndexBuffer; var prevMaterialIndex = materialIndexBuffer[ 0 ]; var startIndex = 0; for ( var i = 0; i < materialIndexBuffer.length; ++ i ) { if ( materialIndexBuffer[ i ] !== prevMaterialIndex ) { geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); prevMaterialIndex = materialIndexBuffer[ i ]; startIndex = i; } } return geo; } /** * Parses normal information for geometry. * @param {FBXGeometryNode} geometryNode * @returns {{dataSize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} */ function getNormals( NormalNode ) { var mappingType = NormalNode.properties.MappingInformationType; var referenceType = NormalNode.properties.ReferenceInformationType; var buffer = parseFloatArray( NormalNode.subNodes.Normals.properties.a ); var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { if ( 'NormalIndex' in NormalNode.subNodes ) { indexBuffer = parseIntArray( NormalNode.subNodes.NormalIndex.properties.a ); } else if ( 'NormalsIndex' in NormalNode.subNodes ) { indexBuffer = parseIntArray( NormalNode.subNodes.NormalsIndex.properties.a ); } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } /** * Parses UV information for geometry. * @param {FBXGeometryNode} geometryNode * @returns {{dataSize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} */ function getUVs( UVNode ) { var mappingType = UVNode.properties.MappingInformationType; var referenceType = UVNode.properties.ReferenceInformationType; var buffer = parseFloatArray( UVNode.subNodes.UV.properties.a ); var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = parseIntArray( UVNode.subNodes.UVIndex.properties.a ); } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } /** * Parses Vertex Color information for geometry. * @param {FBXGeometryNode} geometryNode * @returns {{dataSize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} */ function getColors( ColorNode ) { var mappingType = ColorNode.properties.MappingInformationType; var referenceType = ColorNode.properties.ReferenceInformationType; var buffer = parseFloatArray( ColorNode.subNodes.Colors.properties.a ); var indexBuffer = []; if ( referenceType === 'IndexToDirect' ) { indexBuffer = parseFloatArray( ColorNode.subNodes.ColorIndex.properties.a ); } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } /** * Parses material application information for geometry. * @param {FBXGeometryNode} * @returns {{dataSize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} */ function getMaterials( MaterialNode ) { var mappingType = MaterialNode.properties.MappingInformationType; var referenceType = MaterialNode.properties.ReferenceInformationType; if ( mappingType === 'NoMappingInformation' ) { return { dataSize: 1, buffer: [ 0 ], indices: [ 0 ], mappingType: 'AllSame', referenceType: referenceType }; } var materialIndexBuffer = parseIntArray( MaterialNode.subNodes.Materials.properties.a ); // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect. So we create an intermediate buffer that points to the index in the buffer, // for conforming with the other functions we've written for other data. var materialIndices = []; for ( var materialIndexBufferIndex = 0, materialIndexBufferLength = materialIndexBuffer.length; materialIndexBufferIndex < materialIndexBufferLength; ++ materialIndexBufferIndex ) { materialIndices.push( materialIndexBufferIndex ); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType: mappingType, referenceType: referenceType }; } /** * Function uses the infoObject and given indices to return value array of object. * @param {number} polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). * @param {number} polygonIndex - Index of polygon in geometry. * @param {number} vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). * @param {{datasize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} infoObject - Object containing data and how to access data. * @returns {number[]} */ var dataArray = []; var GetData = { ByPolygonVertex: { /** * Function uses the infoObject and given indices to return value array of object. * @param {number} polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). * @param {number} polygonIndex - Index of polygon in geometry. * @param {number} vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). * @param {{datasize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} infoObject - Object containing data and how to access data. * @returns {number[]} */ Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = ( polygonVertexIndex * infoObject.dataSize ); var to = ( polygonVertexIndex * infoObject.dataSize ) + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); }, /** * Function uses the infoObject and given indices to return value array of object. * @param {number} polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). * @param {number} polygonIndex - Index of polygon in geometry. * @param {number} vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). * @param {{datasize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} infoObject - Object containing data and how to access data. * @returns {number[]} */ IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var index = infoObject.indices[ polygonVertexIndex ]; var from = ( index * infoObject.dataSize ); var to = ( index * infoObject.dataSize ) + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } }, ByPolygon: { /** * Function uses the infoObject and given indices to return value array of object. * @param {number} polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). * @param {number} polygonIndex - Index of polygon in geometry. * @param {number} vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). * @param {{datasize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} infoObject - Object containing data and how to access data. * @returns {number[]} */ Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = polygonIndex * infoObject.dataSize; var to = polygonIndex * infoObject.dataSize + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); }, /** * Function uses the infoObject and given indices to return value array of object. * @param {number} polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). * @param {number} polygonIndex - Index of polygon in geometry. * @param {number} vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). * @param {{datasize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} infoObject - Object containing data and how to access data. * @returns {number[]} */ IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var index = infoObject.indices[ polygonIndex ]; var from = index * infoObject.dataSize; var to = index * infoObject.dataSize + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } }, ByVertice: { Direct: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = ( vertexIndex * infoObject.dataSize ); var to = ( vertexIndex * infoObject.dataSize ) + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } }, AllSame: { /** * Function uses the infoObject and given indices to return value array of object. * @param {number} polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). * @param {number} polygonIndex - Index of polygon in geometry. * @param {number} vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). * @param {{datasize: number, buffer: number[], indices: number[], mappingType: string, referenceType: string}} infoObject - Object containing data and how to access data. * @returns {number[]} */ IndexToDirect: function ( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { var from = infoObject.indices[ 0 ] * infoObject.dataSize; var to = infoObject.indices[ 0 ] * infoObject.dataSize + infoObject.dataSize; // return infoObject.buffer.slice( from, to ); return slice( dataArray, infoObject.buffer, from, to ); } } }; function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { return GetData[ infoObject.mappingType ][ infoObject.referenceType ]( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ); } /** * Specialty function for parsing NurbsCurve based Geometry Nodes. * @param {FBXGeometryNode} geometryNode * @param {{parents: {ID: number, relationship: string}[], children: {ID: number, relationship: string}[]}} relationships * @returns {THREE.BufferGeometry} */ function parseNurbsGeometry( geometryNode ) { if ( THREE.NURBSCurve === undefined ) { console.error( 'THREE.FBXLoader: The loader relies on THREE.NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.' ); return new THREE.BufferGeometry(); } var order = parseInt( geometryNode.properties.Order ); if ( isNaN( order ) ) { console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geometryNode.properties.Order, geometryNode.id ); return new THREE.BufferGeometry(); } var degree = order - 1; var knots = parseFloatArray( geometryNode.subNodes.KnotVector.properties.a ); var controlPoints = []; var pointsValues = parseFloatArray( geometryNode.subNodes.Points.properties.a ); for ( var i = 0, l = pointsValues.length; i < l; i += 4 ) { controlPoints.push( new THREE.Vector4().fromArray( pointsValues, i ) ); } var startKnot, endKnot; if ( geometryNode.properties.Form === 'Closed' ) { controlPoints.push( controlPoints[ 0 ] ); } else if ( geometryNode.properties.Form === 'Periodic' ) { startKnot = degree; endKnot = knots.length - 1 - startKnot; for ( var i = 0; i < degree; ++ i ) { controlPoints.push( controlPoints[ i ] ); } } var curve = new THREE.NURBSCurve( degree, knots, controlPoints, startKnot, endKnot ); var vertices = curve.getPoints( controlPoints.length * 7 ); var positions = new Float32Array( vertices.length * 3 ); for ( var i = 0, l = vertices.length; i < l; ++ i ) { vertices[ i ].toArray( positions, i * 3 ); } var geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); return geometry; } /** * Finally generates Scene graph and Scene graph Objects. * @param {{Objects: {subNodes: {Model: Object.}}}} FBXTree * @param {Map} connections * @param {Map, array: {FBX_ID: number, indices: number[], weights: number[], transform: number[], transformLink: number[], linkMode: string}[], skeleton: THREE.Skeleton|null}>} deformers * @param {Map} geometryMap * @param {Map} materialMap * @returns {THREE.Group} */ function parseScene( FBXTree, connections, deformers, geometryMap, materialMap ) { var sceneGraph = new THREE.Group(); var ModelNode = FBXTree.Objects.subNodes.Model; /** * @type {Array.} */ var modelArray = []; /** * @type {Map.} */ var modelMap = new Map(); for ( var nodeID in ModelNode ) { var id = parseInt( nodeID ); var node = ModelNode[ nodeID ]; var conns = connections.get( id ); var model = null; for ( var i = 0; i < conns.parents.length; ++ i ) { for ( var FBX_ID in deformers ) { var deformer = deformers[ FBX_ID ]; var subDeformers = deformer.map; var subDeformer = subDeformers[ conns.parents[ i ].ID ]; if ( subDeformer ) { var model2 = model; model = new THREE.Bone(); deformer.bones[ subDeformer.index ] = model; // seems like we need this not to make non-connected bone, maybe? // TODO: confirm if ( model2 !== null ) model.add( model2 ); } } } if ( ! model ) { switch ( node.attrType ) { case 'Mesh': /** * @type {?THREE.BufferGeometry} */ var geometry = null; /** * @type {THREE.MultiMaterial|THREE.Material} */ var material = null; /** * @type {Array.} */ var materials = []; for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var child = conns.children[ childrenIndex ]; if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } if ( materialMap.has( child.ID ) ) { materials.push( materialMap.get( child.ID ) ); } } if ( materials.length > 1 ) { material = materials; } else if ( materials.length > 0 ) { material = materials[ 0 ]; } else { material = new THREE.MeshStandardMaterial( { color: 0x3300ff } ); materials.push( material ); } if ( 'color' in geometry.attributes ) { for ( var materialIndex = 0, numMaterials = materials.length; materialIndex < numMaterials; ++materialIndex ) { materials[ materialIndex ].vertexColors = THREE.VertexColors; } } if ( geometry.FBX_Deformer ) { for ( var materialsIndex = 0, materialsLength = materials.length; materialsIndex < materialsLength; ++ materialsIndex ) { materials[ materialsIndex ].skinning = true; } model = new THREE.SkinnedMesh( geometry, material ); } else { model = new THREE.Mesh( geometry, material ); } break; case 'NurbsCurve': var geometry = null; for ( var childrenIndex = 0, childrenLength = conns.children.length; childrenIndex < childrenLength; ++ childrenIndex ) { var child = conns.children[ childrenIndex ]; if ( geometryMap.has( child.ID ) ) { geometry = geometryMap.get( child.ID ); } } // FBX does not list materials for Nurbs lines, so we'll just put our own in here. material = new THREE.LineBasicMaterial( { color: 0x3300ff, linewidth: 5 } ); model = new THREE.Line( geometry, material ); break; default: model = new THREE.Object3D(); break; } } model.name = node.attrName.replace( /:/, '' ).replace( /_/, '' ).replace( /-/, '' ); model.FBX_ID = id; modelArray.push( model ); modelMap.set( id, model ); } for ( var modelArrayIndex = 0, modelArrayLength = modelArray.length; modelArrayIndex < modelArrayLength; ++ modelArrayIndex ) { var model = modelArray[ modelArrayIndex ]; var node = ModelNode[ model.FBX_ID ]; if ( 'Lcl_Translation' in node.properties ) { model.position.fromArray( parseFloatArray( node.properties.Lcl_Translation.value ) ); } if ( 'Lcl_Rotation' in node.properties ) { var rotation = parseFloatArray( node.properties.Lcl_Rotation.value ).map( degreeToRadian ); rotation.push( 'ZYX' ); model.rotation.fromArray( rotation ); } if ( 'Lcl_Scaling' in node.properties ) { model.scale.fromArray( parseFloatArray( node.properties.Lcl_Scaling.value ) ); } if ( 'PreRotation' in node.properties ) { var preRotations = new THREE.Euler().setFromVector3( parseVector3( node.properties.PreRotation ).multiplyScalar( DEG2RAD ), 'ZYX' ); preRotations = new THREE.Quaternion().setFromEuler( preRotations ); var currentRotation = new THREE.Quaternion().setFromEuler( model.rotation ); preRotations.multiply( currentRotation ); model.rotation.setFromQuaternion( preRotations, 'ZYX' ); } var conns = connections.get( model.FBX_ID ); for ( var parentIndex = 0; parentIndex < conns.parents.length; parentIndex ++ ) { var pIndex = findIndex( modelArray, function ( mod ) { return mod.FBX_ID === conns.parents[ parentIndex ].ID; } ); if ( pIndex > - 1 ) { modelArray[ pIndex ].add( model ); break; } } if ( model.parent === null ) { sceneGraph.add( model ); } } // Now with the bones created, we can update the skeletons and bind them to the skinned meshes. sceneGraph.updateMatrixWorld( true ); // Put skeleton into bind pose. var BindPoseNode = FBXTree.Objects.subNodes.Pose; for ( var nodeID in BindPoseNode ) { if ( BindPoseNode[ nodeID ].attrType === 'BindPose' ) { BindPoseNode = BindPoseNode[ nodeID ]; break; } } if ( BindPoseNode ) { var PoseNode = BindPoseNode.subNodes.PoseNode; var worldMatrices = new Map(); for ( var PoseNodeIndex = 0, PoseNodeLength = PoseNode.length; PoseNodeIndex < PoseNodeLength; ++ PoseNodeIndex ) { var node = PoseNode[ PoseNodeIndex ]; var rawMatWrd = parseMatrixArray( node.subNodes.Matrix.properties.a ); worldMatrices.set( parseInt( node.id ), rawMatWrd ); } } for ( var FBX_ID in deformers ) { var deformer = deformers[ FBX_ID ]; var subDeformers = deformer.map; for ( var key in subDeformers ) { var subDeformer = subDeformers[ key ]; var subDeformerIndex = subDeformer.index; /** * @type {THREE.Bone} */ var bone = deformer.bones[ subDeformerIndex ]; if ( ! worldMatrices.has( bone.FBX_ID ) ) { break; } var mat = worldMatrices.get( bone.FBX_ID ); bone.matrixWorld.copy( mat ); } // Now that skeleton is in bind pose, bind to model. deformer.skeleton = new THREE.Skeleton( deformer.bones ); var conns = connections.get( deformer.FBX_ID ); var parents = conns.parents; for ( var parentsIndex = 0, parentsLength = parents.length; parentsIndex < parentsLength; ++ parentsIndex ) { var parent = parents[ parentsIndex ]; if ( geometryMap.has( parent.ID ) ) { var geoID = parent.ID; var geoConns = connections.get( geoID ); for ( var i = 0; i < geoConns.parents.length; ++ i ) { if ( modelMap.has( geoConns.parents[ i ].ID ) ) { var model = modelMap.get( geoConns.parents[ i ].ID ); //ASSERT model typeof SkinnedMesh model.bind( deformer.skeleton, model.matrixWorld ); break; } } } } } //Skeleton is now bound, return objects to starting //world positions. sceneGraph.updateMatrixWorld( true ); // Silly hack with the animation parsing. We're gonna pretend the scene graph has a skeleton // to attach animations to, since FBXs treat animations as animations for the entire scene, // not just for individual objects. sceneGraph.skeleton = { bones: modelArray }; var animations = parseAnimations( FBXTree, connections, sceneGraph ); addAnimations( sceneGraph, animations ); return sceneGraph; } /** * Parses animation information from FBXTree and generates an AnimationInfoObject. * @param {{Objects: {subNodes: {AnimationCurveNode: any, AnimationCurve: any, AnimationLayer: any, AnimationStack: any}}}} FBXTree * @param {Map} connections */ function parseAnimations( FBXTree, connections, sceneGraph ) { var rawNodes = FBXTree.Objects.subNodes.AnimationCurveNode; var rawCurves = FBXTree.Objects.subNodes.AnimationCurve; var rawLayers = FBXTree.Objects.subNodes.AnimationLayer; var rawStacks = FBXTree.Objects.subNodes.AnimationStack; /** * @type {{ curves: Map, layers: Map, stacks: Map, length: number, fps: number, frames: number }} */ var returnObject = { curves: new Map(), layers: {}, stacks: {}, length: 0, fps: 30, frames: 0 }; /** * @type {Array.<{ id: number; attr: string; internalID: number; attrX: boolean; attrY: boolean; attrZ: boolean; containerBoneID: number; containerID: number; }>} */ var animationCurveNodes = []; for ( var nodeID in rawNodes ) { if ( nodeID.match( /\d+/ ) ) { var animationNode = parseAnimationNode( FBXTree, rawNodes[ nodeID ], connections, sceneGraph ); animationCurveNodes.push( animationNode ); } } /** * @type {Map.} */ var tmpMap = new Map(); for ( var animationCurveNodeIndex = 0; animationCurveNodeIndex < animationCurveNodes.length; ++ animationCurveNodeIndex ) { if ( animationCurveNodes[ animationCurveNodeIndex ] === null ) { continue; } tmpMap.set( animationCurveNodes[ animationCurveNodeIndex ].id, animationCurveNodes[ animationCurveNodeIndex ] ); } /** * @type {{ version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }[]} */ var animationCurves = []; for ( nodeID in rawCurves ) { if ( nodeID.match( /\d+/ ) ) { var animationCurve = parseAnimationCurve( rawCurves[ nodeID ] ); // seems like this check would be necessary? if ( ! connections.has( animationCurve.id ) ) continue; animationCurves.push( animationCurve ); var firstParentConn = connections.get( animationCurve.id ).parents[ 0 ]; var firstParentID = firstParentConn.ID; var firstParentRelationship = firstParentConn.relationship; var axis = ''; if ( firstParentRelationship.match( /X/ ) ) { axis = 'x'; } else if ( firstParentRelationship.match( /Y/ ) ) { axis = 'y'; } else if ( firstParentRelationship.match( /Z/ ) ) { axis = 'z'; } else { continue; } tmpMap.get( firstParentID ).curves[ axis ] = animationCurve; } } tmpMap.forEach( function ( curveNode ) { var id = curveNode.containerBoneID; if ( ! returnObject.curves.has( id ) ) { returnObject.curves.set( id, { T: null, R: null, S: null } ); } returnObject.curves.get( id )[ curveNode.attr ] = curveNode; if ( curveNode.attr === 'R' ) { var curves = curveNode.curves; // Seems like some FBX files have AnimationCurveNode // which doesn't have any connected AnimationCurve. // Setting animation parameter for them here. if ( curves.x === null ) { curves.x = { version: null, times: [ 0.0 ], values: [ 0.0 ] }; } if ( curves.y === null ) { curves.y = { version: null, times: [ 0.0 ], values: [ 0.0 ] }; } if ( curves.z === null ) { curves.z = { version: null, times: [ 0.0 ], values: [ 0.0 ] }; } curves.x.values = curves.x.values.map( degreeToRadian ); curves.y.values = curves.y.values.map( degreeToRadian ); curves.z.values = curves.z.values.map( degreeToRadian ); if ( curveNode.preRotations !== null ) { var preRotations = new THREE.Euler().setFromVector3( curveNode.preRotations, 'ZYX' ); preRotations = new THREE.Quaternion().setFromEuler( preRotations ); var frameRotation = new THREE.Euler(); var frameRotationQuaternion = new THREE.Quaternion(); for ( var frame = 0; frame < curves.x.times.length; ++ frame ) { frameRotation.set( curves.x.values[ frame ], curves.y.values[ frame ], curves.z.values[ frame ], 'ZYX' ); frameRotationQuaternion.setFromEuler( frameRotation ).premultiply( preRotations ); frameRotation.setFromQuaternion( frameRotationQuaternion, 'ZYX' ); curves.x.values[ frame ] = frameRotation.x; curves.y.values[ frame ] = frameRotation.y; curves.z.values[ frame ] = frameRotation.z; } } } } ); for ( var nodeID in rawLayers ) { /** * @type {{ T: { id: number; attr: string; internalID: number; attrX: boolean; attrY: boolean; attrZ: boolean; containerBoneID: number; containerID: number; curves: { x: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; y: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; z: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; }, }, R: { id: number; attr: string; internalID: number; attrX: boolean; attrY: boolean; attrZ: boolean; containerBoneID: number; containerID: number; curves: { x: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; y: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; z: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; }, }, S: { id: number; attr: string; internalID: number; attrX: boolean; attrY: boolean; attrZ: boolean; containerBoneID: number; containerID: number; curves: { x: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; y: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; z: { version: any; id: number; internalID: number; times: number[]; values: number[]; attrFlag: number[]; attrData: number[]; }; }, } }[]} */ var layer = []; var children = connections.get( parseInt( nodeID ) ).children; for ( var childIndex = 0; childIndex < children.length; childIndex ++ ) { // Skip lockInfluenceWeights if ( tmpMap.has( children[ childIndex ].ID ) ) { var curveNode = tmpMap.get( children[ childIndex ].ID ); var boneID = curveNode.containerBoneID; if ( layer[ boneID ] === undefined ) { layer[ boneID ] = { T: null, R: null, S: null }; } layer[ boneID ][ curveNode.attr ] = curveNode; } } returnObject.layers[ nodeID ] = layer; } for ( var nodeID in rawStacks ) { var layers = []; var children = connections.get( parseInt( nodeID ) ).children; var timestamps = { max: 0, min: Number.MAX_VALUE }; for ( var childIndex = 0; childIndex < children.length; ++ childIndex ) { var currentLayer = returnObject.layers[ children[ childIndex ].ID ]; if ( currentLayer !== undefined ) { layers.push( currentLayer ); for ( var currentLayerIndex = 0, currentLayerLength = currentLayer.length; currentLayerIndex < currentLayerLength; ++ currentLayerIndex ) { var layer = currentLayer[ currentLayerIndex ]; if ( layer ) { getCurveNodeMaxMinTimeStamps( layer, timestamps ); } } } } // Do we have an animation clip with actual length? if ( timestamps.max > timestamps.min ) { returnObject.stacks[ nodeID ] = { name: rawStacks[ nodeID ].attrName, layers: layers, length: timestamps.max - timestamps.min, frames: ( timestamps.max - timestamps.min ) * 30 }; } } return returnObject; } /** * @param {Object} FBXTree * @param {{id: number, attrName: string, properties: Object}} animationCurveNode * @param {Map} connections * @param {{skeleton: {bones: {FBX_ID: number}[]}}} sceneGraph */ function parseAnimationNode( FBXTree, animationCurveNode, connections, sceneGraph ) { var rawModels = FBXTree.Objects.subNodes.Model; var returnObject = { /** * @type {number} */ id: animationCurveNode.id, /** * @type {string} */ attr: animationCurveNode.attrName, /** * @type {number} */ internalID: animationCurveNode.id, /** * @type {boolean} */ attrX: false, /** * @type {boolean} */ attrY: false, /** * @type {boolean} */ attrZ: false, /** * @type {number} */ containerBoneID: - 1, /** * @type {number} */ containerID: - 1, curves: { x: null, y: null, z: null }, /** * @type {number[]} */ preRotations: null }; if ( returnObject.attr.match( /S|R|T/ ) ) { for ( var attributeKey in animationCurveNode.properties ) { if ( attributeKey.match( /X/ ) ) { returnObject.attrX = true; } if ( attributeKey.match( /Y/ ) ) { returnObject.attrY = true; } if ( attributeKey.match( /Z/ ) ) { returnObject.attrZ = true; } } } else { return null; } var conns = connections.get( returnObject.id ); var containerIndices = conns.parents; for ( var containerIndicesIndex = containerIndices.length - 1; containerIndicesIndex >= 0; -- containerIndicesIndex ) { var boneID = findIndex( sceneGraph.skeleton.bones, function ( bone ) { return bone.FBX_ID === containerIndices[ containerIndicesIndex ].ID; } ); if ( boneID > - 1 ) { returnObject.containerBoneID = boneID; returnObject.containerID = containerIndices[ containerIndicesIndex ].ID; var model = rawModels[ returnObject.containerID.toString() ]; if ( 'PreRotation' in model.properties ) { returnObject.preRotations = parseVector3( model.properties.PreRotation ).multiplyScalar( Math.PI / 180 ); } break; } } return returnObject; } /** * @param {{id: number, subNodes: {KeyTime: {properties: {a: string}}, KeyValueFloat: {properties: {a: string}}, KeyAttrFlags: {properties: {a: string}}, KeyAttrDataFloat: {properties: {a: string}}}}} animationCurve */ function parseAnimationCurve( animationCurve ) { return { version: null, id: animationCurve.id, internalID: animationCurve.id, times: parseFloatArray( animationCurve.subNodes.KeyTime.properties.a ).map( convertFBXTimeToSeconds ), values: parseFloatArray( animationCurve.subNodes.KeyValueFloat.properties.a ), attrFlag: parseIntArray( animationCurve.subNodes.KeyAttrFlags.properties.a ), attrData: parseFloatArray( animationCurve.subNodes.KeyAttrDataFloat.properties.a ) }; } /** * Sets the maxTimeStamp and minTimeStamp variables if it has timeStamps that are either larger or smaller * than the max or min respectively. * @param {{ T: { id: number, attr: string, internalID: number, attrX: boolean, attrY: boolean, attrZ: boolean, containerBoneID: number, containerID: number, curves: { x: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, y: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, z: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, }, }, R: { id: number, attr: string, internalID: number, attrX: boolean, attrY: boolean, attrZ: boolean, containerBoneID: number, containerID: number, curves: { x: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, y: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, z: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, }, }, S: { id: number, attr: string, internalID: number, attrX: boolean, attrY: boolean, attrZ: boolean, containerBoneID: number, containerID: number, curves: { x: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, y: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, z: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, }, }, }} layer */ function getCurveNodeMaxMinTimeStamps( layer, timestamps ) { if ( layer.R ) { getCurveMaxMinTimeStamp( layer.R.curves, timestamps ); } if ( layer.S ) { getCurveMaxMinTimeStamp( layer.S.curves, timestamps ); } if ( layer.T ) { getCurveMaxMinTimeStamp( layer.T.curves, timestamps ); } } /** * Sets the maxTimeStamp and minTimeStamp if one of the curve's time stamps * exceeds the maximum or minimum. * @param {{ x: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, y: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], }, z: { version: any, id: number, internalID: number, times: number[], values: number[], attrFlag: number[], attrData: number[], } }} curve */ function getCurveMaxMinTimeStamp( curve, timestamps ) { if ( curve.x ) { getCurveAxisMaxMinTimeStamps( curve.x, timestamps ); } if ( curve.y ) { getCurveAxisMaxMinTimeStamps( curve.y, timestamps ); } if ( curve.z ) { getCurveAxisMaxMinTimeStamps( curve.z, timestamps ); } } /** * Sets the maxTimeStamp and minTimeStamp if one of its timestamps exceeds the maximum or minimum. * @param {{times: number[]}} axis */ function getCurveAxisMaxMinTimeStamps( axis, timestamps ) { timestamps.max = axis.times[ axis.times.length - 1 ] > timestamps.max ? axis.times[ axis.times.length - 1 ] : timestamps.max; timestamps.min = axis.times[ 0 ] < timestamps.min ? axis.times[ 0 ] : timestamps.min; } /** * @param {{ curves: Map; layers: Map; stacks: Map; length: number; fps: number; frames: number; }} animations, * @param {{skeleton: { bones: THREE.Bone[]}}} group */ function addAnimations( group, animations ) { if ( group.animations === undefined ) { group.animations = []; } var stacks = animations.stacks; for ( var key in stacks ) { var stack = stacks[ key ]; /** * @type {{ * name: string, * fps: number, * length: number, * hierarchy: Array.<{ * parent: number, * name: string, * keys: Array.<{ * time: number, * pos: Array., * rot: Array., * scl: Array. * }> * }> * }} */ var animationData = { name: stack.name, fps: 30, length: stack.length, hierarchy: [] }; var bones = group.skeleton.bones; for ( var bonesIndex = 0, bonesLength = bones.length; bonesIndex < bonesLength; ++ bonesIndex ) { var bone = bones[ bonesIndex ]; var name = bone.name.replace( /.*:/, '' ); var parentIndex = findIndex( bones, function ( parentBone ) { return bone.parent === parentBone; } ); animationData.hierarchy.push( { parent: parentIndex, name: name, keys: [] } ); } for ( var frame = 0; frame <= stack.frames; frame ++ ) { for ( var bonesIndex = 0, bonesLength = bones.length; bonesIndex < bonesLength; ++ bonesIndex ) { var bone = bones[ bonesIndex ]; var boneIndex = bonesIndex; var animationNode = stack.layers[ 0 ][ boneIndex ]; for ( var hierarchyIndex = 0, hierarchyLength = animationData.hierarchy.length; hierarchyIndex < hierarchyLength; ++ hierarchyIndex ) { var node = animationData.hierarchy[ hierarchyIndex ]; if ( node.name === bone.name ) { node.keys.push( generateKey( animations, animationNode, bone, frame ) ); } } } } group.animations.push( THREE.AnimationClip.parseAnimation( animationData, bones ) ); } } var euler = new THREE.Euler(); var quaternion = new THREE.Quaternion(); /** * @param {THREE.Bone} bone */ function generateKey( animations, animationNode, bone, frame ) { var key = { time: frame / animations.fps, pos: bone.position.toArray(), rot: bone.quaternion.toArray(), scl: bone.scale.toArray() }; if ( animationNode === undefined ) return key; try { if ( hasCurve( animationNode, 'T' ) && hasKeyOnFrame( animationNode.T, frame ) ) { key.pos = [ animationNode.T.curves.x.values[ frame ], animationNode.T.curves.y.values[ frame ], animationNode.T.curves.z.values[ frame ] ]; } if ( hasCurve( animationNode, 'R' ) && hasKeyOnFrame( animationNode.R, frame ) ) { var rotationX = animationNode.R.curves.x.values[ frame ]; var rotationY = animationNode.R.curves.y.values[ frame ]; var rotationZ = animationNode.R.curves.z.values[ frame ]; quaternion.setFromEuler( euler.set( rotationX, rotationY, rotationZ, 'ZYX' ) ); key.rot = quaternion.toArray(); } if ( hasCurve( animationNode, 'S' ) && hasKeyOnFrame( animationNode.S, frame ) ) { key.scl = [ animationNode.S.curves.x.values[ frame ], animationNode.S.curves.y.values[ frame ], animationNode.S.curves.z.values[ frame ] ]; } } catch ( error ) { // Curve is not fully plotted. console.log( 'THREE.FBXLoader: ', bone ); console.log( 'THREE.FBXLoader: ', error ); } return key; } var AXES = [ 'x', 'y', 'z' ]; function hasCurve( animationNode, attribute ) { if ( animationNode === undefined ) { return false; } var attributeNode = animationNode[ attribute ]; if ( ! attributeNode ) { return false; } return AXES.every( function ( key ) { return attributeNode.curves[ key ] !== null; } ); } function hasKeyOnFrame( attributeNode, frame ) { return AXES.every( function ( key ) { return isKeyExistOnFrame( attributeNode.curves[ key ], frame ); } ); } function isKeyExistOnFrame( curve, frame ) { return curve.values[ frame ] !== undefined; } /** * An instance of a Vertex with data for drawing vertices to the screen. * @constructor */ function Vertex() { /** * Position of the vertex. * @type {THREE.Vector3} */ this.position = new THREE.Vector3(); /** * Normal of the vertex * @type {THREE.Vector3} */ this.normal = new THREE.Vector3(); /** * UV coordinates of the vertex. * @type {THREE.Vector2} */ this.uv = new THREE.Vector2(); /** * Color of the vertex * @type {THREE.Vector3} */ this.color = new THREE.Vector3(); /** * Indices of the bones vertex is influenced by. * @type {THREE.Vector4} */ this.skinIndices = new THREE.Vector4( 0, 0, 0, 0 ); /** * Weights that each bone influences the vertex. * @type {THREE.Vector4} */ this.skinWeights = new THREE.Vector4( 0, 0, 0, 0 ); } Object.assign( Vertex.prototype, { copy: function ( target ) { var returnVar = target || new Vertex(); returnVar.position.copy( this.position ); returnVar.normal.copy( this.normal ); returnVar.uv.copy( this.uv ); returnVar.skinIndices.copy( this.skinIndices ); returnVar.skinWeights.copy( this.skinWeights ); return returnVar; }, flattenToBuffers: function ( vertexBuffer, normalBuffer, uvBuffer, colorBuffer, skinIndexBuffer, skinWeightBuffer ) { this.position.toArray( vertexBuffer, vertexBuffer.length ); this.normal.toArray( normalBuffer, normalBuffer.length ); this.uv.toArray( uvBuffer, uvBuffer.length ); this.color.toArray( colorBuffer, colorBuffer.length ); this.skinIndices.toArray( skinIndexBuffer, skinIndexBuffer.length ); this.skinWeights.toArray( skinWeightBuffer, skinWeightBuffer.length ); } } ); /** * @constructor */ function Triangle() { /** * @type {{position: THREE.Vector3, normal: THREE.Vector3, uv: THREE.Vector2, skinIndices: THREE.Vector4, skinWeights: THREE.Vector4}[]} */ this.vertices = []; } Object.assign( Triangle.prototype, { copy: function ( target ) { var returnVar = target || new Triangle(); for ( var i = 0; i < this.vertices.length; ++ i ) { this.vertices[ i ].copy( returnVar.vertices[ i ] ); } return returnVar; }, flattenToBuffers: function ( vertexBuffer, normalBuffer, uvBuffer, colorBuffer, skinIndexBuffer, skinWeightBuffer ) { var vertices = this.vertices; for ( var i = 0, l = vertices.length; i < l; ++ i ) { vertices[ i ].flattenToBuffers( vertexBuffer, normalBuffer, uvBuffer, colorBuffer, skinIndexBuffer, skinWeightBuffer ); } } } ); /** * @constructor */ function Face() { /** * @type {{vertices: {position: THREE.Vector3, normal: THREE.Vector3, uv: THREE.Vector2, skinIndices: THREE.Vector4, skinWeights: THREE.Vector4}[]}[]} */ this.triangles = []; this.materialIndex = 0; } Object.assign( Face.prototype, { copy: function ( target ) { var returnVar = target || new Face(); for ( var i = 0; i < this.triangles.length; ++ i ) { this.triangles[ i ].copy( returnVar.triangles[ i ] ); } returnVar.materialIndex = this.materialIndex; return returnVar; }, genTrianglesFromVertices: function ( vertexArray ) { for ( var i = 2; i < vertexArray.length; ++ i ) { var triangle = new Triangle(); triangle.vertices[ 0 ] = vertexArray[ 0 ]; triangle.vertices[ 1 ] = vertexArray[ i - 1 ]; triangle.vertices[ 2 ] = vertexArray[ i ]; this.triangles.push( triangle ); } }, flattenToBuffers: function ( vertexBuffer, normalBuffer, uvBuffer, colorBuffer, skinIndexBuffer, skinWeightBuffer, materialIndexBuffer ) { var triangles = this.triangles; var materialIndex = this.materialIndex; for ( var i = 0, l = triangles.length; i < l; ++ i ) { triangles[ i ].flattenToBuffers( vertexBuffer, normalBuffer, uvBuffer, colorBuffer, skinIndexBuffer, skinWeightBuffer ); append( materialIndexBuffer, [ materialIndex, materialIndex, materialIndex ] ); } } } ); /** * @constructor */ function Geometry() { /** * @type {{triangles: {vertices: {position: THREE.Vector3, normal: THREE.Vector3, uv: THREE.Vector2, skinIndices: THREE.Vector4, skinWeights: THREE.Vector4}[]}[], materialIndex: number}[]} */ this.faces = []; /** * @type {{}|THREE.Skeleton} */ this.skeleton = null; } Object.assign( Geometry.prototype, { /** * @returns {{vertexBuffer: number[], normalBuffer: number[], uvBuffer: number[], skinIndexBuffer: number[], skinWeightBuffer: number[], materialIndexBuffer: number[]}} */ flattenToBuffers: function () { var vertexBuffer = []; var normalBuffer = []; var uvBuffer = []; var colorBuffer = []; var skinIndexBuffer = []; var skinWeightBuffer = []; var materialIndexBuffer = []; var faces = this.faces; for ( var i = 0, l = faces.length; i < l; ++ i ) { faces[ i ].flattenToBuffers( vertexBuffer, normalBuffer, uvBuffer, colorBuffer, skinIndexBuffer, skinWeightBuffer, materialIndexBuffer ); } return { vertexBuffer: vertexBuffer, normalBuffer: normalBuffer, uvBuffer: uvBuffer, colorBuffer: colorBuffer, skinIndexBuffer: skinIndexBuffer, skinWeightBuffer: skinWeightBuffer, materialIndexBuffer: materialIndexBuffer }; } } ); function TextParser() {} Object.assign( TextParser.prototype, { getPrevNode: function () { return this.nodeStack[ this.currentIndent - 2 ]; }, getCurrentNode: function () { return this.nodeStack[ this.currentIndent - 1 ]; }, getCurrentProp: function () { return this.currentProp; }, pushStack: function ( node ) { this.nodeStack.push( node ); this.currentIndent += 1; }, popStack: function () { this.nodeStack.pop(); this.currentIndent -= 1; }, setCurrentProp: function ( val, name ) { this.currentProp = val; this.currentPropName = name; }, // ----------parse --------------------------------------------------- parse: function ( text ) { this.currentIndent = 0; this.allNodes = new FBXTree(); this.nodeStack = []; this.currentProp = []; this.currentPropName = ''; var split = text.split( '\n' ); for ( var lineNum = 0, lineLength = split.length; lineNum < lineLength; lineNum ++ ) { var l = split[ lineNum ]; // skip comment line if ( l.match( /^[\s\t]*;/ ) ) { continue; } // skip empty line if ( l.match( /^[\s\t]*$/ ) ) { continue; } // beginning of node var beginningOfNodeExp = new RegExp( '^\\t{' + this.currentIndent + '}(\\w+):(.*){', '' ); var match = l.match( beginningOfNodeExp ); if ( match ) { var nodeName = match[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' ); var nodeAttrs = match[ 2 ].split( ',' ); for ( var i = 0, l = nodeAttrs.length; i < l; i ++ ) { nodeAttrs[ i ] = nodeAttrs[ i ].trim().replace( /^"/, '' ).replace( /"$/, '' ); } this.parseNodeBegin( l, nodeName, nodeAttrs || null ); continue; } // node's property var propExp = new RegExp( '^\\t{' + ( this.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' ); var match = l.match( propExp ); if ( match ) { var propName = match[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); var propValue = match[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); // for special case: base64 image data follows "Content: ," line // Content: , // "iVB..." if ( propName === 'Content' && propValue === ',' ) { propValue = split[ ++ lineNum ].replace( /"/g, '' ).trim(); } this.parseNodeProperty( l, propName, propValue ); continue; } // end of node var endOfNodeExp = new RegExp( '^\\t{' + ( this.currentIndent - 1 ) + '}}' ); if ( l.match( endOfNodeExp ) ) { this.nodeEnd(); continue; } // for special case, // // Vertices: *8670 { // a: 0.0356229953467846,13.9599733352661,-0.399196773.....(snip) // -0.0612030513584614,13.960485458374,-0.409748703241348,-0.10..... // 0.12490539252758,13.7450733184814,-0.454119384288788,0.09272..... // 0.0836158767342567,13.5432004928589,-0.435397416353226,0.028..... // // these case the lines must contiue with previous line if ( l.match( /^[^\s\t}]/ ) ) { this.parseNodePropertyContinued( l ); } } return this.allNodes; }, parseNodeBegin: function ( line, nodeName, nodeAttrs ) { // var nodeName = match[1]; var node = { 'name': nodeName, properties: {}, 'subNodes': {} }; var attrs = this.parseNodeAttr( nodeAttrs ); var currentNode = this.getCurrentNode(); // a top node if ( this.currentIndent === 0 ) { this.allNodes.add( nodeName, node ); } else { // a subnode // already exists subnode, then append it if ( nodeName in currentNode.subNodes ) { var tmp = currentNode.subNodes[ nodeName ]; // console.log( "duped entry found\nkey: " + nodeName + "\nvalue: " + propValue ); if ( this.isFlattenNode( currentNode.subNodes[ nodeName ] ) ) { if ( attrs.id === '' ) { currentNode.subNodes[ nodeName ] = []; currentNode.subNodes[ nodeName ].push( tmp ); } else { currentNode.subNodes[ nodeName ] = {}; currentNode.subNodes[ nodeName ][ tmp.id ] = tmp; } } if ( attrs.id === '' ) { currentNode.subNodes[ nodeName ].push( node ); } else { currentNode.subNodes[ nodeName ][ attrs.id ] = node; } } else if ( typeof attrs.id === 'number' || attrs.id.match( /^\d+$/ ) ) { currentNode.subNodes[ nodeName ] = {}; currentNode.subNodes[ nodeName ][ attrs.id ] = node; } else { currentNode.subNodes[ nodeName ] = node; } } // for this ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ // NodeAttribute: 1001463072, "NodeAttribute::", "LimbNode" { if ( nodeAttrs ) { node.id = attrs.id; node.attrName = attrs.name; node.attrType = attrs.type; } this.pushStack( node ); }, parseNodeAttr: function ( attrs ) { var id = attrs[ 0 ]; if ( attrs[ 0 ] !== '' ) { id = parseInt( attrs[ 0 ] ); if ( isNaN( id ) ) { // PolygonVertexIndex: *16380 { id = attrs[ 0 ]; } } var name = '', type = ''; if ( attrs.length > 1 ) { name = attrs[ 1 ].replace( /^(\w+)::/, '' ); type = attrs[ 2 ]; } return { id: id, name: name, type: type }; }, parseNodeProperty: function ( line, propName, propValue ) { var currentNode = this.getCurrentNode(); var parentName = currentNode.name; // special case parent node's is like "Properties70" // these children nodes must treat with careful if ( parentName !== undefined ) { var propMatch = parentName.match( /Properties(\d)+/ ); if ( propMatch ) { this.parseNodeSpecialProperty( line, propName, propValue ); return; } } // special case Connections if ( propName === 'C' ) { var connProps = propValue.split( ',' ).slice( 1 ); var from = parseInt( connProps[ 0 ] ); var to = parseInt( connProps[ 1 ] ); var rest = propValue.split( ',' ).slice( 3 ); propName = 'connections'; propValue = [ from, to ]; append( propValue, rest ); if ( currentNode.properties[ propName ] === undefined ) { currentNode.properties[ propName ] = []; } } // special case Connections if ( propName === 'Node' ) { var id = parseInt( propValue ); currentNode.properties.id = id; currentNode.id = id; } // already exists in properties, then append this if ( propName in currentNode.properties ) { // console.log( "duped entry found\nkey: " + propName + "\nvalue: " + propValue ); if ( Array.isArray( currentNode.properties[ propName ] ) ) { currentNode.properties[ propName ].push( propValue ); } else { currentNode.properties[ propName ] += propValue; } } else { // console.log( propName + ": " + propValue ); if ( Array.isArray( currentNode.properties[ propName ] ) ) { currentNode.properties[ propName ].push( propValue ); } else { currentNode.properties[ propName ] = propValue; } } this.setCurrentProp( currentNode.properties, propName ); }, // TODO: parseNodePropertyContinued: function ( line ) { this.currentProp[ this.currentPropName ] += line; }, parseNodeSpecialProperty: function ( line, propName, propValue ) { // split this // P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1 // into array like below // ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ] var props = propValue.split( '",' ); for ( var i = 0, l = props.length; i < l; i ++ ) { props[ i ] = props[ i ].trim().replace( /^\"/, '' ).replace( /\s/, '_' ); } var innerPropName = props[ 0 ]; var innerPropType1 = props[ 1 ]; var innerPropType2 = props[ 2 ]; var innerPropFlag = props[ 3 ]; var innerPropValue = props[ 4 ]; /* if ( innerPropValue === undefined ) { innerPropValue = props[3]; } */ // cast value in its type switch ( innerPropType1 ) { case 'int': innerPropValue = parseInt( innerPropValue ); break; case 'double': innerPropValue = parseFloat( innerPropValue ); break; case 'ColorRGB': case 'Vector3D': innerPropValue = parseFloatArray( innerPropValue ); break; } // CAUTION: these props must append to parent's parent this.getPrevNode().properties[ innerPropName ] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; this.setCurrentProp( this.getPrevNode().properties, innerPropName ); }, nodeEnd: function () { this.popStack(); }, /* ---------------------------------------------------------------- */ /* util */ isFlattenNode: function ( node ) { return ( 'subNodes' in node && 'properties' in node ) ? true : false; } } ); // Binary format specification: // https://code.blender.org/2013/08/fbx-binary-file-format-specification/ // https://wiki.rogiken.org/specifications/file-format/fbx/ (more detail but Japanese) function BinaryParser() {} Object.assign( BinaryParser.prototype, { /** * Parses binary data and builds FBXTree as much compatible as possible with the one built by TextParser. * @param {ArrayBuffer} buffer * @returns {THREE.FBXTree} */ parse: function ( buffer ) { var reader = new BinaryReader( buffer ); reader.skip( 23 ); // skip magic 23 bytes var version = reader.getUint32(); console.log( 'THREE.FBXLoader: FBX binary version: ' + version ); var allNodes = new FBXTree(); while ( ! this.endOfContent( reader ) ) { var node = this.parseNode( reader, version ); if ( node !== null ) allNodes.add( node.name, node ); } return allNodes; }, /** * Checks if reader has reached the end of content. * @param {BinaryReader} reader * @returns {boolean} */ endOfContent: function( reader ) { // footer size: 160bytes + 16-byte alignment padding // - 16bytes: magic // - padding til 16-byte alignment (at least 1byte?) // (seems like some exporters embed fixed 15 or 16bytes?) // - 4bytes: magic // - 4bytes: version // - 120bytes: zero // - 16bytes: magic if ( reader.size() % 16 === 0 ) { return ( ( reader.getOffset() + 160 + 16 ) & ~0xf ) >= reader.size(); } else { return reader.getOffset() + 160 + 16 >= reader.size(); } }, /** * Parses Node as much compatible as possible with the one parsed by TextParser * TODO: could be optimized more? * @param {BinaryReader} reader * @param {number} version * @returns {Object} - Returns an Object as node, or null if NULL-record. */ parseNode: function ( reader, version ) { // The first three data sizes depends on version. var endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); var numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); var propertyListLen = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); var nameLen = reader.getUint8(); var name = reader.getString( nameLen ); // Regards this node as NULL-record if endOffset is zero if ( endOffset === 0 ) return null; var propertyList = []; for ( var i = 0; i < numProperties; i ++ ) { propertyList.push( this.parseProperty( reader ) ); } // Regards the first three elements in propertyList as id, attrName, and attrType var id = propertyList.length > 0 ? propertyList[ 0 ] : ''; var attrName = propertyList.length > 1 ? propertyList[ 1 ] : ''; var attrType = propertyList.length > 2 ? propertyList[ 2 ] : ''; var subNodes = {}; var properties = {}; var isSingleProperty = false; // if this node represents just a single property // like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]} if ( numProperties === 1 && reader.getOffset() === endOffset ) { isSingleProperty = true; } while ( endOffset > reader.getOffset() ) { var node = this.parseNode( reader, version ); if ( node === null ) continue; // special case: child node is single property if ( node.singleProperty === true ) { var value = node.propertyList[ 0 ]; if ( Array.isArray( value ) ) { // node represents // Vertices: *3 { // a: 0.01, 0.02, 0.03 // } // of text format here. node.properties[ node.name ] = node.propertyList[ 0 ]; subNodes[ node.name ] = node; // Later phase expects single property array is in node.properties.a as String. // TODO: optimize node.properties.a = value.toString(); } else { // node represents // Version: 100 // of text format here. properties[ node.name ] = value; } continue; } // special case: connections if ( name === 'Connections' && node.name === 'C' ) { var array = []; // node.propertyList would be like // ["OO", 111264976, 144038752, "d|x"] (?, from, to, additional values) for ( var i = 1, il = node.propertyList.length; i < il; i ++ ) { array[ i - 1 ] = node.propertyList[ i ]; } if ( properties.connections === undefined ) { properties.connections = []; } properties.connections.push( array ); continue; } // special case: child node is Properties\d+ if ( node.name.match( /^Properties\d+$/ ) ) { // move child node's properties to this node. var keys = Object.keys( node.properties ); for ( var i = 0, il = keys.length; i < il; i ++ ) { var key = keys[ i ]; properties[ key ] = node.properties[ key ]; } continue; } // special case: properties if ( name.match( /^Properties\d+$/ ) && node.name === 'P' ) { var innerPropName = node.propertyList[ 0 ]; var innerPropType1 = node.propertyList[ 1 ]; var innerPropType2 = node.propertyList[ 2 ]; var innerPropFlag = node.propertyList[ 3 ]; var innerPropValue; if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' ); if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' ); if ( innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) { innerPropValue = [ node.propertyList[ 4 ], node.propertyList[ 5 ], node.propertyList[ 6 ] ]; } else { innerPropValue = node.propertyList[ 4 ]; } if ( innerPropType1.indexOf( 'Lcl_' ) === 0 ) { innerPropValue = innerPropValue.toString(); } // this will be copied to parent. see above. properties[ innerPropName ] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; continue; } // standard case // follows TextParser's manner. if ( subNodes[ node.name ] === undefined ) { if ( typeof node.id === 'number' ) { subNodes[ node.name ] = {}; subNodes[ node.name ][ node.id ] = node; } else { subNodes[ node.name ] = node; } } else { if ( node.id === '' ) { if ( ! Array.isArray( subNodes[ node.name ] ) ) { subNodes[ node.name ] = [ subNodes[ node.name ] ]; } subNodes[ node.name ].push( node ); } else { if ( subNodes[ node.name ][ node.id ] === undefined ) { subNodes[ node.name ][ node.id ] = node; } else { // conflict id. irregular? if ( ! Array.isArray( subNodes[ node.name ][ node.id ] ) ) { subNodes[ node.name ][ node.id ] = [ subNodes[ node.name ][ node.id ] ]; } subNodes[ node.name ][ node.id ].push( node ); } } } } return { singleProperty: isSingleProperty, id: id, attrName: attrName, attrType: attrType, name: name, properties: properties, propertyList: propertyList, // raw property list, would be used by parent subNodes: subNodes }; }, parseProperty: function ( reader ) { var type = reader.getChar(); switch ( type ) { case 'F': return reader.getFloat32(); case 'D': return reader.getFloat64(); case 'L': return reader.getInt64(); case 'I': return reader.getInt32(); case 'Y': return reader.getInt16(); case 'C': return reader.getBoolean(); case 'f': case 'd': case 'l': case 'i': case 'b': var arrayLength = reader.getUint32(); var encoding = reader.getUint32(); // 0: non-compressed, 1: compressed var compressedLength = reader.getUint32(); if ( encoding === 0 ) { switch ( type ) { case 'f': return reader.getFloat32Array( arrayLength ); case 'd': return reader.getFloat64Array( arrayLength ); case 'l': return reader.getInt64Array( arrayLength ); case 'i': return reader.getInt32Array( arrayLength ); case 'b': return reader.getBooleanArray( arrayLength ); } } if ( window.Zlib === undefined ) { throw new Error( 'THREE.FBXLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' ); } var inflate = new Zlib.Inflate( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) ); var reader2 = new BinaryReader( inflate.decompress().buffer ); switch ( type ) { case 'f': return reader2.getFloat32Array( arrayLength ); case 'd': return reader2.getFloat64Array( arrayLength ); case 'l': return reader2.getInt64Array( arrayLength ); case 'i': return reader2.getInt32Array( arrayLength ); case 'b': return reader2.getBooleanArray( arrayLength ); } case 'S': var length = reader.getUint32(); return reader.getString( length ); case 'R': var length = reader.getUint32(); return reader.getArrayBuffer( length ); default: throw new Error( 'THREE.FBXLoader: Unknown property type ' + type ); } } } ); function BinaryReader( buffer, littleEndian ) { this.dv = new DataView( buffer ); this.offset = 0; this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true; } Object.assign( BinaryReader.prototype, { getOffset: function () { return this.offset; }, size: function () { return this.dv.buffer.byteLength; }, skip: function ( length ) { this.offset += length; }, // seems like true/false representation depends on exporter. // true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) // then sees LSB. getBoolean: function () { return ( this.getUint8() & 1 ) === 1; }, getBooleanArray: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getBoolean() ); } return a; }, getInt8: function () { var value = this.dv.getInt8( this.offset ); this.offset += 1; return value; }, getInt8Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt8() ); } return a; }, getUint8: function () { var value = this.dv.getUint8( this.offset ); this.offset += 1; return value; }, getUint8Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint8() ); } return a; }, getInt16: function () { var value = this.dv.getInt16( this.offset, this.littleEndian ); this.offset += 2; return value; }, getInt16Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt16() ); } return a; }, getUint16: function () { var value = this.dv.getUint16( this.offset, this.littleEndian ); this.offset += 2; return value; }, getUint16Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint16() ); } return a; }, getInt32: function () { var value = this.dv.getInt32( this.offset, this.littleEndian ); this.offset += 4; return value; }, getInt32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt32() ); } return a; }, getUint32: function () { var value = this.dv.getUint32( this.offset, this.littleEndian ); this.offset += 4; return value; }, getUint32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint32() ); } return a; }, // JavaScript doesn't support 64-bit integer so attempting to calculate by ourselves. // 1 << 32 will return 1 so using multiply operation instead here. // There'd be a possibility that this method returns wrong value if the value // is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. // TODO: safely handle 64-bit integer getInt64: function () { var low, high; if ( this.littleEndian ) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } // calculate negative value if ( high & 0x80000000 ) { high = ~high & 0xFFFFFFFF; low = ~low & 0xFFFFFFFF; if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF; low = ( low + 1 ) & 0xFFFFFFFF; return - ( high * 0x100000000 + low ); } return high * 0x100000000 + low; }, getInt64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getInt64() ); } return a; }, // Note: see getInt64() comment getUint64: function () { var low, high; if ( this.littleEndian ) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } return high * 0x100000000 + low; }, getUint64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getUint64() ); } return a; }, getFloat32: function () { var value = this.dv.getFloat32( this.offset, this.littleEndian ); this.offset += 4; return value; }, getFloat32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getFloat32() ); } return a; }, getFloat64: function () { var value = this.dv.getFloat64( this.offset, this.littleEndian ); this.offset += 8; return value; }, getFloat64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getFloat64() ); } return a; }, getArrayBuffer: function ( size ) { var value = this.dv.buffer.slice( this.offset, this.offset + size ); this.offset += size; return value; }, getChar: function () { return String.fromCharCode( this.getUint8() ); }, getString: function ( size ) { var s = ''; while ( size > 0 ) { var value = this.getUint8(); size--; if ( value === 0 ) break; s += String.fromCharCode( value ); } this.skip( size ); return s; } } ); function FBXTree() {} Object.assign( FBXTree.prototype, { add: function ( key, val ) { this[ key ] = val; }, searchConnectionParent: function ( id ) { if ( this.__cache_search_connection_parent === undefined ) { this.__cache_search_connection_parent = []; } if ( this.__cache_search_connection_parent[ id ] !== undefined ) { return this.__cache_search_connection_parent[ id ]; } else { this.__cache_search_connection_parent[ id ] = []; } var conns = this.Connections.properties.connections; var results = []; for ( var i = 0; i < conns.length; ++ i ) { if ( conns[ i ][ 0 ] == id ) { // 0 means scene root var res = conns[ i ][ 1 ] === 0 ? - 1 : conns[ i ][ 1 ]; results.push( res ); } } if ( results.length > 0 ) { append( this.__cache_search_connection_parent[ id ], results ); return results; } else { this.__cache_search_connection_parent[ id ] = [ - 1 ]; return [ - 1 ]; } }, searchConnectionChildren: function ( id ) { if ( this.__cache_search_connection_children === undefined ) { this.__cache_search_connection_children = []; } if ( this.__cache_search_connection_children[ id ] !== undefined ) { return this.__cache_search_connection_children[ id ]; } else { this.__cache_search_connection_children[ id ] = []; } var conns = this.Connections.properties.connections; var res = []; for ( var i = 0; i < conns.length; ++ i ) { if ( conns[ i ][ 1 ] == id ) { // 0 means scene root res.push( conns[ i ][ 0 ] === 0 ? - 1 : conns[ i ][ 0 ] ); // there may more than one kid, then search to the end } } if ( res.length > 0 ) { append( this.__cache_search_connection_children[ id ], res ); return res; } else { this.__cache_search_connection_children[ id ] = [ ]; return [ ]; } }, searchConnectionType: function ( id, to ) { var key = id + ',' + to; // TODO: to hash if ( this.__cache_search_connection_type === undefined ) { this.__cache_search_connection_type = {}; } if ( this.__cache_search_connection_type[ key ] !== undefined ) { return this.__cache_search_connection_type[ key ]; } else { this.__cache_search_connection_type[ key ] = ''; } var conns = this.Connections.properties.connections; for ( var i = 0; i < conns.length; ++ i ) { if ( conns[ i ][ 0 ] == id && conns[ i ][ 1 ] == to ) { // 0 means scene root this.__cache_search_connection_type[ key ] = conns[ i ][ 2 ]; return conns[ i ][ 2 ]; } } this.__cache_search_connection_type[ id ] = null; return null; } } ); /** * @param {ArrayBuffer} buffer * @returns {boolean} */ function isFbxFormatBinary( buffer ) { var CORRECT = 'Kaydara FBX Binary \0'; return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length ); } /** * @returns {boolean} */ function isFbxFormatASCII( text ) { var CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ]; var cursor = 0; function read( offset ) { var result = text[ offset - 1 ]; text = text.slice( cursor + offset ); cursor ++; return result; } for ( var i = 0; i < CORRECT.length; ++ i ) { var num = read( 1 ); if ( num === CORRECT[ i ] ) { return false; } } return true; } /** * @returns {number} */ function getFbxVersion( text ) { var versionRegExp = /FBXVersion: (\d+)/; var match = text.match( versionRegExp ); if ( match ) { var version = parseInt( match[ 1 ] ); return version; } throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' ); } /** * Converts FBX ticks into real time seconds. * @param {number} time - FBX tick timestamp to convert. * @returns {number} - FBX tick in real world time. */ function convertFBXTimeToSeconds( time ) { // Constant is FBX ticks per second. return time / 46186158000; } /** * Parses comma separated list of float numbers and returns them in an array. * @example * // Returns [ 5.6, 9.4, 2.5, 1.4 ] * parseFloatArray( "5.6,9.4,2.5,1.4" ) * @returns {number[]} */ function parseFloatArray( string ) { var array = string.split( ',' ); for ( var i = 0, l = array.length; i < l; i ++ ) { array[ i ] = parseFloat( array[ i ] ); } return array; } /** * Parses comma separated list of int numbers and returns them in an array. * @example * // Returns [ 5, 8, 2, 3 ] * parseFloatArray( "5,8,2,3" ) * @returns {number[]} */ function parseIntArray( string ) { var array = string.split( ',' ); for ( var i = 0, l = array.length; i < l; i ++ ) { array[ i ] = parseInt( array[ i ] ); } return array; } /** * Parses Vector3 property from FBXTree. Property is given as .value.x, .value.y, etc. * @param {FBXVector3} property - Property to parse as Vector3. * @returns {THREE.Vector3} */ function parseVector3( property ) { return new THREE.Vector3().fromArray( property.value ); } /** * Parses Color property from FBXTree. Property is given as .value.x, .value.y, etc. * @param {FBXVector3} property - Property to parse as Color. * @returns {THREE.Color} */ function parseColor( property ) { return new THREE.Color().fromArray( property.value ); } function parseMatrixArray( floatString ) { return new THREE.Matrix4().fromArray( parseFloatArray( floatString ) ); } /** * Converts ArrayBuffer to String. * @param {ArrayBuffer} buffer * @param {number} from * @param {number} to * @returns {String} */ function convertArrayBufferToString( buffer, from, to ) { if ( from === undefined ) from = 0; if ( to === undefined ) to = buffer.byteLength; var array = new Uint8Array( buffer, from, to ); if ( window.TextDecoder !== undefined ) { return new TextDecoder().decode( array ); } var s = ''; for ( var i = 0, il = array.length; i < il; i ++ ) { s += String.fromCharCode( array[ i ] ); } return s; } /** * Converts number from degrees into radians. * @param {number} value * @returns {number} */ function degreeToRadian( value ) { return value * DEG2RAD; } var DEG2RAD = Math.PI / 180; // function findIndex( array, func ) { for ( var i = 0, l = array.length; i < l; i ++ ) { if ( func( array[ i ] ) ) return i; } return -1; } function append( a, b ) { for ( var i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) { a[ j ] = b[ i ]; } } function slice( a, b, from, to ) { for ( var i = from, j = 0; i < to; i ++, j ++ ) { a[ j ] = b[ i ]; } return a; } } )(); },{}],4:[function(require,module,exports){ module.exports = Object.assign(function GamepadButton () {}, { FACE_1: 0, FACE_2: 1, FACE_3: 2, FACE_4: 3, L_SHOULDER_1: 4, R_SHOULDER_1: 5, L_SHOULDER_2: 6, R_SHOULDER_2: 7, SELECT: 8, START: 9, DPAD_UP: 12, DPAD_DOWN: 13, DPAD_LEFT: 14, DPAD_RIGHT: 15, VENDOR: 16, }); },{}],5:[function(require,module,exports){ function GamepadButtonEvent (type, index, details) { this.type = type; this.index = index; this.pressed = details.pressed; this.value = details.value; } module.exports = GamepadButtonEvent; },{}],6:[function(require,module,exports){ /** * @author Wei Meng / http://about.me/menway * * Description: A THREE loader for PLY ASCII files (known as the Polygon File Format or the Stanford Triangle Format). * * * Limitations: ASCII decoding assumes file is UTF-8. * * Usage: * var loader = new THREE.PLYLoader(); * loader.load('./models/ply/ascii/dolphins.ply', function (geometry) { * * scene.add( new THREE.Mesh( geometry ) ); * * } ); * * If the PLY file uses non standard property names, they can be mapped while * loading. For example, the following maps the properties * “diffuse_(red|green|blue)” in the file to standard color names. * * loader.setPropertyNameMapping( { * diffuse_red: 'red', * diffuse_green: 'green', * diffuse_blue: 'blue' * } ); * */ module.exports = THREE.PLYLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; this.propertyNameMapping = {}; }; THREE.PLYLoader.prototype = { constructor: THREE.PLYLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( text ) { onLoad( scope.parse( text ) ); }, onProgress, onError ); }, setPropertyNameMapping: function ( mapping ) { this.propertyNameMapping = mapping; }, bin2str: function ( buf ) { var array_buffer = new Uint8Array( buf ); var str = ''; for ( var i = 0; i < buf.byteLength; i ++ ) { str += String.fromCharCode( array_buffer[ i ] ); // implicitly assumes little-endian } return str; }, isASCII: function( data ) { var header = this.parseHeader( this.bin2str( data ) ); return header.format === "ascii"; }, parse: function ( data ) { if ( data instanceof ArrayBuffer ) { return this.isASCII( data ) ? this.parseASCII( this.bin2str( data ) ) : this.parseBinary( data ); } else { return this.parseASCII( data ); } }, parseHeader: function ( data ) { var patternHeader = /ply([\s\S]*)end_header\s/; var headerText = ""; var headerLength = 0; var result = patternHeader.exec( data ); if ( result !== null ) { headerText = result [ 1 ]; headerLength = result[ 0 ].length; } var header = { comments: [], elements: [], headerLength: headerLength }; var lines = headerText.split( '\n' ); var currentElement = undefined; var lineType, lineValues; function make_ply_element_property( propertValues, propertyNameMapping ) { var property = { type: propertValues[ 0 ] }; if ( property.type === 'list' ) { property.name = propertValues[ 3 ]; property.countType = propertValues[ 1 ]; property.itemType = propertValues[ 2 ]; } else { property.name = propertValues[ 1 ]; } if ( property.name in propertyNameMapping ) { property.name = propertyNameMapping[ property.name ]; } return property; } for ( var i = 0; i < lines.length; i ++ ) { var line = lines[ i ]; line = line.trim(); if ( line === "" ) { continue; } lineValues = line.split( /\s+/ ); lineType = lineValues.shift(); line = lineValues.join( " " ); switch ( lineType ) { case "format": header.format = lineValues[ 0 ]; header.version = lineValues[ 1 ]; break; case "comment": header.comments.push( line ); break; case "element": if ( ! ( currentElement === undefined ) ) { header.elements.push( currentElement ); } currentElement = Object(); currentElement.name = lineValues[ 0 ]; currentElement.count = parseInt( lineValues[ 1 ] ); currentElement.properties = []; break; case "property": currentElement.properties.push( make_ply_element_property( lineValues, this.propertyNameMapping ) ); break; default: console.log( "unhandled", lineType, lineValues ); } } if ( ! ( currentElement === undefined ) ) { header.elements.push( currentElement ); } return header; }, parseASCIINumber: function ( n, type ) { switch ( type ) { case 'char': case 'uchar': case 'short': case 'ushort': case 'int': case 'uint': case 'int8': case 'uint8': case 'int16': case 'uint16': case 'int32': case 'uint32': return parseInt( n ); case 'float': case 'double': case 'float32': case 'float64': return parseFloat( n ); } }, parseASCIIElement: function ( properties, line ) { var values = line.split( /\s+/ ); var element = Object(); for ( var i = 0; i < properties.length; i ++ ) { if ( properties[ i ].type === "list" ) { var list = []; var n = this.parseASCIINumber( values.shift(), properties[ i ].countType ); for ( var j = 0; j < n; j ++ ) { list.push( this.parseASCIINumber( values.shift(), properties[ i ].itemType ) ); } element[ properties[ i ].name ] = list; } else { element[ properties[ i ].name ] = this.parseASCIINumber( values.shift(), properties[ i ].type ); } } return element; }, parseASCII: function ( data ) { // PLY ascii format specification, as per http://en.wikipedia.org/wiki/PLY_(file_format) var geometry = new THREE.Geometry(); var result; var header = this.parseHeader( data ); var patternBody = /end_header\s([\s\S]*)$/; var body = ""; if ( ( result = patternBody.exec( data ) ) !== null ) { body = result [ 1 ]; } var lines = body.split( '\n' ); var currentElement = 0; var currentElementCount = 0; geometry.useColor = false; for ( var i = 0; i < lines.length; i ++ ) { var line = lines[ i ]; line = line.trim(); if ( line === "" ) { continue; } if ( currentElementCount >= header.elements[ currentElement ].count ) { currentElement ++; currentElementCount = 0; } var element = this.parseASCIIElement( header.elements[ currentElement ].properties, line ); this.handleElement( geometry, header.elements[ currentElement ].name, element ); currentElementCount ++; } return this.postProcess( geometry ); }, postProcess: function ( geometry ) { if ( geometry.useColor ) { for ( var i = 0; i < geometry.faces.length; i ++ ) { geometry.faces[ i ].vertexColors = [ geometry.colors[ geometry.faces[ i ].a ], geometry.colors[ geometry.faces[ i ].b ], geometry.colors[ geometry.faces[ i ].c ] ]; } geometry.elementsNeedUpdate = true; } geometry.computeBoundingSphere(); return geometry; }, handleElement: function ( geometry, elementName, element ) { if ( elementName === "vertex" ) { geometry.vertices.push( new THREE.Vector3( element.x, element.y, element.z ) ); if ( 'red' in element && 'green' in element && 'blue' in element ) { geometry.useColor = true; var color = new THREE.Color(); color.setRGB( element.red / 255.0, element.green / 255.0, element.blue / 255.0 ); geometry.colors.push( color ); } } else if ( elementName === "face" ) { // BEGIN: Edits by donmccurdy. var vertex_indices = element.vertex_indices || element.vertex_index; // END: Edits by donmccurdy. if ( vertex_indices.length === 3 ) { geometry.faces.push( new THREE.Face3( vertex_indices[ 0 ], vertex_indices[ 1 ], vertex_indices[ 2 ] ) ); } else if ( vertex_indices.length === 4 ) { geometry.faces.push( new THREE.Face3( vertex_indices[ 0 ], vertex_indices[ 1 ], vertex_indices[ 3 ] ), new THREE.Face3( vertex_indices[ 1 ], vertex_indices[ 2 ], vertex_indices[ 3 ] ) ); } } }, binaryRead: function ( dataview, at, type, little_endian ) { switch ( type ) { // corespondences for non-specific length types here match rply: case 'int8': case 'char': return [ dataview.getInt8( at ), 1 ]; case 'uint8': case 'uchar': return [ dataview.getUint8( at ), 1 ]; case 'int16': case 'short': return [ dataview.getInt16( at, little_endian ), 2 ]; case 'uint16': case 'ushort': return [ dataview.getUint16( at, little_endian ), 2 ]; case 'int32': case 'int': return [ dataview.getInt32( at, little_endian ), 4 ]; case 'uint32': case 'uint': return [ dataview.getUint32( at, little_endian ), 4 ]; case 'float32': case 'float': return [ dataview.getFloat32( at, little_endian ), 4 ]; case 'float64': case 'double': return [ dataview.getFloat64( at, little_endian ), 8 ]; } }, binaryReadElement: function ( dataview, at, properties, little_endian ) { var element = Object(); var result, read = 0; for ( var i = 0; i < properties.length; i ++ ) { if ( properties[ i ].type === "list" ) { var list = []; result = this.binaryRead( dataview, at + read, properties[ i ].countType, little_endian ); var n = result[ 0 ]; read += result[ 1 ]; for ( var j = 0; j < n; j ++ ) { result = this.binaryRead( dataview, at + read, properties[ i ].itemType, little_endian ); list.push( result[ 0 ] ); read += result[ 1 ]; } element[ properties[ i ].name ] = list; } else { result = this.binaryRead( dataview, at + read, properties[ i ].type, little_endian ); element[ properties[ i ].name ] = result[ 0 ]; read += result[ 1 ]; } } return [ element, read ]; }, parseBinary: function ( data ) { var geometry = new THREE.Geometry(); var header = this.parseHeader( this.bin2str( data ) ); var little_endian = ( header.format === "binary_little_endian" ); var body = new DataView( data, header.headerLength ); var result, loc = 0; for ( var currentElement = 0; currentElement < header.elements.length; currentElement ++ ) { for ( var currentElementCount = 0; currentElementCount < header.elements[ currentElement ].count; currentElementCount ++ ) { result = this.binaryReadElement( body, loc, header.elements[ currentElement ].properties, little_endian ); loc += result[ 1 ]; var element = result[ 0 ]; this.handleElement( geometry, header.elements[ currentElement ].name, element ); } } return this.postProcess( geometry ); } }; },{}],7:[function(require,module,exports){ module.exports={ "size": 5, "cellSize": 10, "extrudeSettings": { "amount": 1, "bevelEnabled": true, "bevelSegments": 1, "steps": 1, "bevelSize": 0.5, "bevelThickness": 0.5 }, "autogenerated": true, "cells": [ { "q": -1, "r": 0, "s": 1, "h": 1, "walkable": true, "userData": {} }, { "q": 0, "r": -1, "s": 1, "h": 1, "walkable": true, "userData": {} }, { "q": 0, "r": 0, "s": 0, "h": 1, "walkable": true, "userData": {} }, { "q": 1, "r": -1, "s": 0, "h": 1, "walkable": true, "userData": {} }, { "q": -1, "r": 1, "s": 0, "h": 0, "walkable": true, "userData": {} }, { "q": 0, "r": 1, "s": -1, "h": 0, "walkable": true, "userData": {} }, { "q": 1, "r": 0, "s": -1, "h": 0, "walkable": true, "userData": {} }] } },{}],8:[function(require,module,exports){ /** * Source: https://github.com/Adobe-Marketing-Cloud/fetch-script */ function getScriptId() { return 'script_' + Date.now() + '_' + Math.ceil(Math.random() * 100000); } function createScript(url, id) { var script = document.createElement('script'); script.type = 'text/javascript'; script.async = true; script.id = id; script.src = url; return script; } function removeScript(id) { const script = document.getElementById(id); const parent = script.parentNode; try { parent && parent.removeChild(script); } catch (e) { // ignore } } function appendScript(script) { const firstScript = document.getElementsByTagName('script')[0]; firstScript.parentNode.insertBefore(script, firstScript); } function fetchScriptInternal(url, options, Promise) { return new Promise(function(resolve, reject) { const timeout = options.timeout || 5000; const scriptId = getScriptId(); const script = createScript(url, scriptId); const timeoutId = setTimeout(function() { reject(new Error('Script request to ' + url + ' timed out')); removeScript(scriptId); }, timeout); const disableTimeout = function(timeoutId) { clearTimeout(timeoutId); }; script.addEventListener('load', function(e) { resolve({ok: true}); disableTimeout(timeoutId); removeScript(scriptId); }); script.addEventListener('error', function(e) { reject(new Error('Script request to ' + url + ' failed ' + e)); disableTimeout(timeoutId); removeScript(scriptId); }); appendScript(script); }); } function fetchScript(settings) { settings = settings || {}; return function (url, options) { options = options || {}; return fetchScriptInternal(url, options, settings.Promise || Promise); }; } module.exports = fetchScript; },{}],9:[function(require,module,exports){ var vg=module.exports={VERSION:"0.1.1",PI:Math.PI,TAU:2*Math.PI,DEG_TO_RAD:.0174532925,RAD_TO_DEG:57.2957795,SQRT3:Math.sqrt(3),TILE:"tile",ENT:"entity",STR:"structure",HEX:"hex",SQR:"square",ABS:"abstract"};vg.Board=function(e,t){if(!e)throw new Error("You must pass in a grid system for the board to use.");this.tiles=[],this.tileGroup=null,this.group=new THREE.Object3D,this.grid=null,this.overlay=null,this.finder=new vg.AStarFinder(t),vg.Loader.init(),this.setGrid(e)},vg.Board.prototype={setEntityOnTile:function(e,t){var i=this.grid.cellToPixel(t.cell);e.position.copy(i),e.position.y+=e.heightOffset||0,e.tile&&(e.tile.entity=null),e.tile=t,t.entity=e},addTile:function(e){var t=this.tiles.indexOf(e);-1===t&&(this.tiles.push(e),this.snapTileToGrid(e),e.position.y=0,this.tileGroup.add(e.mesh),this.grid.add(e.cell),e.cell.tile=e)},removeTile:function(e){if(e){var t=this.tiles.indexOf(e);this.grid.remove(e.cell),-1!==t&&this.tiles.splice(t,1),e.dispose()}},removeAllTiles:function(){if(this.tileGroup)for(var e=this.tileGroup.children,t=0;tt;t++)i.push(this._createVertex(t));for(this.cellShape=new THREE.Shape,this.cellShape.moveTo(i[0].x,i[0].y),t=1;6>t;t++)this.cellShape.lineTo(i[t].x,i[t].y);this.cellShape.lineTo(i[0].x,i[0].y),this.cellShape.autoClose=!0,this.cellGeo=new THREE.Geometry,this.cellGeo.vertices=i,this.cellGeo.verticesNeedUpdate=!0,this.cellShapeGeo=new THREE.ShapeGeometry(this.cellShape),this._cellWidth=2*this.cellSize,this._cellLength=.5*vg.SQRT3*this._cellWidth,this._hashDelimeter=".",this._directions=[new vg.Cell(1,-1,0),new vg.Cell(1,0,-1),new vg.Cell(0,1,-1),new vg.Cell(-1,1,0),new vg.Cell(-1,0,1),new vg.Cell(0,-1,1)],this._diagonals=[new vg.Cell(2,-1,-1),new vg.Cell(1,1,-2),new vg.Cell(-1,2,-1),new vg.Cell(-2,1,1),new vg.Cell(-1,-1,2),new vg.Cell(1,-2,1)],this._list=[],this._vec3=new THREE.Vector3,this._cel=new vg.Cell,this._conversionVec=new THREE.Vector3,this._geoCache=[],this._matCache=[]},vg.HexGrid.TWO_THIRDS=2/3,vg.HexGrid.prototype={cellToPixel:function(e){return this._vec3.x=e.q*this._cellWidth*.75,this._vec3.y=e.h,this._vec3.z=-((e.s-e.r)*this._cellLength*.5),this._vec3},pixelToCell:function(e){var t=e.x*(vg.HexGrid.TWO_THIRDS/this.cellSize),i=(-e.x/3+vg.SQRT3/3*e.z)/this.cellSize;return this._cel.set(t,i,-t-i),this._cubeRound(this._cel)},getCellAt:function(e){var t=e.x*(vg.HexGrid.TWO_THIRDS/this.cellSize),i=(-e.x/3+vg.SQRT3/3*e.z)/this.cellSize;return this._cel.set(t,i,-t-i),this._cubeRound(this._cel),this.cells[this.cellToHash(this._cel)]},getNeighbors:function(e,t,i){var s,n,l=this._directions.length;for(this._list.length=0,s=0;l>s;s++)this._cel.copy(e),this._cel.add(this._directions[s]),n=this.cells[this.cellToHash(this._cel)],!n||i&&!i(e,n)||this._list.push(n);if(t)for(s=0;l>s;s++)this._cel.copy(e),this._cel.add(this._diagonals[s]),n=this.cells[this.cellToHash(this._cel)],!n||i&&!i(e,n)||this._list.push(n);return this._list},getRandomCell:function(){var e,t=0,i=vg.Tools.randomInt(0,this.numCells);for(e in this.cells){if(t===i)return this.cells[e];t++}return this.cells[e]},cellToHash:function(e){return e.q+this._hashDelimeter+e.r+this._hashDelimeter+e.s},distance:function(e,t){var i=Math.max(Math.abs(e.q-t.q),Math.abs(e.r-t.r),Math.abs(e.s-t.s));return i+=t.h-e.h},clearPath:function(){var e,t;for(e in this.cells)t=this.cells[e],t._calcCost=0,t._priority=0,t._parent=null,t._visited=!1},traverse:function(e){var t;for(t in this.cells)e(this.cells[t])},generateTile:function(e,t,i){var s=Math.abs(e.h);1>s&&(s=1);var n=this._geoCache[s];n||(this.extrudeSettings.amount=s,n=new THREE.ExtrudeGeometry(this.cellShape,this.extrudeSettings),this._geoCache[s]=n);var l=new vg.Tile({size:this.cellSize,scale:t,cell:e,geometry:n,material:i});return e.tile=l,l},generateTiles:function(e){e=e||{};var t=[],i={tileScale:.95,cellSize:this.cellSize,material:null,extrudeSettings:{amount:1,bevelEnabled:!0,bevelSegments:1,steps:1,bevelSize:.5,bevelThickness:.5}};i=vg.Tools.merge(i,e),this.cellSize=i.cellSize,this._cellWidth=2*this.cellSize,this._cellLength=.5*vg.SQRT3*this._cellWidth,this.autogenerated=!0,this.extrudeSettings=i.extrudeSettings;var s,n,l;for(s in this.cells)l=this.cells[s],n=this.generateTile(l,i.tileScale,i.material),n.position.copy(this.cellToPixel(l)),n.position.y=0,t.push(n);return t},generateTilePoly:function(e){e||(e=new THREE.MeshBasicMaterial({color:2405631}));var t=new THREE.Mesh(this.cellShapeGeo,e);return this._vec3.set(1,0,0),t.rotateOnAxis(this._vec3,vg.PI/2),t},generate:function(e){e=e||{},this.size="undefined"==typeof e.size?this.size:e.size;var t,i,s,n;for(t=-this.size;ts;s++)for(n=-e;e+1>n;n++)if(l=-s-n,Math.abs(s)<=e&&Math.abs(n)<=e&&Math.abs(l)<=e){this._cel.set(s,n,l);var h=new THREE.Line(r,i);h.position.copy(this.cellToPixel(this._cel)),h.rotation.x=90*vg.DEG_TO_RAD,t.add(h)}},add:function(e){var t=this.cellToHash(e);if(!this.cells[t])return this.cells[t]=e,this.numCells++,e},remove:function(e){var t=this.cellToHash(e);this.cells[t]&&(delete this.cells[t],this.numCells--)},dispose:function(){this.cells=null,this.numCells=0,this.cellShape=null,this.cellGeo.dispose(),this.cellGeo=null,this.cellShapeGeo.dispose(),this.cellShapeGeo=null,this._list=null,this._vec3=null,this._conversionVec=null,this._geoCache=null,this._matCache=null},load:function(e,t,i){var s=this;vg.Tools.getJSON({url:e,callback:function(e){s.fromJSON(e),t.call(i||null,e)},cache:!1,scope:s})},fromJSON:function(e){var t,i,s=e.cells;for(this.cells={},this.numCells=0,this.size=e.size,this.cellSize=e.cellSize,this._cellWidth=2*this.cellSize,this._cellLength=.5*vg.SQRT3*this._cellWidth,this.extrudeSettings=e.extrudeSettings,this.autogenerated=e.autogenerated,t=0;tl&&n>r?t=-i-s:l>r?i=-t-s:s=-t-i,this._cel.set(t,i,s)}},vg.HexGrid.prototype.constructor=vg.HexGrid,vg.SqrGrid=function(e){e=e||{},this.type=vg.SQR,this.size=5,this.cellSize="undefined"==typeof e.cellSize?10:e.cellSize,this.cells={},this.numCells=0,this.extrudeSettings=null,this.autogenerated=!1;var t=[];t.push(new THREE.Vector3),t.push(new THREE.Vector3(-this.cellSize,this.cellSize)),t.push(new THREE.Vector3(this.cellSize,this.cellSize)),t.push(new THREE.Vector3(this.cellSize,-this.cellSize)),this.cellShape=new THREE.Shape,this.cellShape.moveTo(-this.cellSize,-this.cellSize),this.cellShape.lineTo(-this.cellSize,this.cellSize),this.cellShape.lineTo(this.cellSize,this.cellSize),this.cellShape.lineTo(this.cellSize,-this.cellSize),this.cellShape.lineTo(-this.cellSize,-this.cellSize),this.cellGeo=new THREE.Geometry,this.cellGeo.vertices=t,this.cellGeo.verticesNeedUpdate=!0,this.cellShapeGeo=new THREE.ShapeGeometry(this.cellShape),this._fullCellSize=2*this.cellSize,this._hashDelimeter=".",this._directions=[new vg.Cell(1,0,0),new vg.Cell(0,-1,0),new vg.Cell(-1,0,0),new vg.Cell(0,1,0)],this._diagonals=[new vg.Cell(-1,-1,0),new vg.Cell(-1,1,0),new vg.Cell(1,1,0),new vg.Cell(1,-1,0)],this._list=[],this._vec3=new THREE.Vector3,this._cel=new vg.Cell,this._conversionVec=new THREE.Vector3,this._geoCache=[],this._matCache=[]},vg.SqrGrid.prototype={cellToPixel:function(e){return this._vec3.x=e.q*this._fullCellSize,this._vec3.y=e.h,this._vec3.z=e.r*this._fullCellSize,this._vec3},pixelToCell:function(e){var t=Math.round(e.x/this._fullCellSize),i=Math.round(e.z/this._fullCellSize);return this._cel.set(t,i,0)},getCellAt:function(e){var t=Math.round(e.x/this._fullCellSize),i=Math.round(e.z/this._fullCellSize);return this._cel.set(t,i),this.cells[this.cellToHash(this._cel)]},getNeighbors:function(e,t,i){var s,n,l=this._directions.length;for(this._list.length=0,s=0;l>s;s++)this._cel.copy(e),this._cel.add(this._directions[s]),n=this.cells[this.cellToHash(this._cel)],!n||i&&!i(e,n)||this._list.push(n);if(t)for(s=0;l>s;s++)this._cel.copy(e),this._cel.add(this._diagonals[s]),n=this.cells[this.cellToHash(this._cel)],!n||i&&!i(e,n)||this._list.push(n);return this._list},getRandomCell:function(){var e,t=0,i=vg.Tools.randomInt(0,this.numCells);for(e in this.cells){if(t===i)return this.cells[e];t++}return this.cells[e]},cellToHash:function(e){return e.q+this._hashDelimeter+e.r},distance:function(e,t){var i=Math.max(Math.abs(e.q-t.q),Math.abs(e.r-t.r));return i+=t.h-e.h},clearPath:function(){var e,t;for(e in this.cells)t=this.cells[e],t._calcCost=0,t._priority=0,t._parent=null,t._visited=!1},traverse:function(e){var t;for(t in this.cells)e(this.cells[t])},generateTile:function(e,t,i){var s=Math.abs(e.h);1>s&&(s=1);var n=this._geoCache[s];n||(this.extrudeSettings.amount=s,n=new THREE.ExtrudeGeometry(this.cellShape,this.extrudeSettings),this._geoCache[s]=n);var l=new vg.Tile({size:this.cellSize,scale:t,cell:e,geometry:n,material:i});return e.tile=l,l},generateTiles:function(e){e=e||{};var t=[],i={tileScale:.95,cellSize:this.cellSize,material:null,extrudeSettings:{amount:1,bevelEnabled:!0,bevelSegments:1,steps:1,bevelSize:.5,bevelThickness:.5}};i=vg.Tools.merge(i,e),this.cellSize=i.cellSize,this._fullCellSize=2*this.cellSize,this.autogenerated=!0,this.extrudeSettings=i.extrudeSettings;var s,n,l;for(s in this.cells)l=this.cells[s],n=this.generateTile(l,i.tileScale,i.material),n.position.copy(this.cellToPixel(l)),n.position.y=0,t.push(n);return t},generateTilePoly:function(e){e||(e=new THREE.MeshBasicMaterial({color:2405631}));var t=new THREE.Mesh(this.cellShapeGeo,e);return this._vec3.set(1,0,0),t.rotateOnAxis(this._vec3,vg.PI/2),t},generate:function(e){e=e||{},this.size="undefined"==typeof e.size?this.size:e.size;var t,i,s,n=Math.ceil(this.size/2);for(t=-n;n>t;t++)for(i=-n;n>i;i++)s=new vg.Cell(t,i+1),this.add(s)},generateOverlay:function(e,t,i){var s,n,l=Math.ceil(e/2);for(s=-l;l>s;s++)for(n=-l;l>n;n++){this._cel.set(s,n);var r=new THREE.Line(this.cellGeo,i);r.position.copy(this.cellToPixel(this._cel)),r.rotation.x=90*vg.DEG_TO_RAD,t.add(r)}},add:function(e){var t=this.cellToHash(e);if(!this.cells[t])return this.cells[t]=e,this.numCells++,e},remove:function(e){var t=this.cellToHash(e);this.cells[t]&&(delete this.cells[t],this.numCells--)},dispose:function(){this.cells=null,this.numCells=0,this.cellShape=null,this.cellGeo.dispose(),this.cellGeo=null,this.cellShapeGeo.dispose(),this.cellShapeGeo=null,this._list=null,this._vec3=null,this._conversionVec=null,this._geoCache=null,this._matCache=null},load:function(e,t,i){vg.Tools.getJSON({url:e,callback:function(e){this.fromJSON(e),t.call(i||null,e)},cache:!1,scope:this})},fromJSON:function(e){var t,i,s=e.cells;for(this.cells={},this.numCells=0,this.size=e.size,this.cellSize=e.cellSize,this._fullCellSize=2*this.cellSize,this.extrudeSettings=e.extrudeSettings,this.autogenerated=e.autogenerated,t=0;tt;t++)this.add(s[t])},remove:function(e){var t=this.getNode(e);return!t||t.free?!1:(t.prev&&(t.prev.next=t.next),t.next&&(t.next.prev=t.prev),t.prev||(this.first=t.next),t.next||(this.last=t.prev),t.free=!0,t.prev=null,t.next=null,this.length--,!0)},shift:function(){var e=this.first;return 0===this.length?null:(e.prev&&(e.prev.next=e.next),e.next&&(e.next.prev=e.prev),this.first=e.next,e.next||(this.last=null),e.free=!0,e.prev=null,e.next=null,this.length--,e.obj)},pop:function(){var e=this.last;return 0===this.length?null:(e.prev&&(e.prev.next=e.next),e.next&&(e.next.prev=e.prev),this.last=e.prev,e.prev||(this.first=null),e.free=!0,e.prev=null,e.next=null,this.length--,e.obj)},concat:function(e){for(var t=e.first;t;)this.add(t.obj),t=t.next},clear:function(){for(var e=this.first;e;)e.free=!0,e=e.next;this.first=null,this.length=0},dispose:function(){for(var e=this.first;e;)e.obj=null,e=e.next;this.first=null,this.objToNodeMap=null},dump:function(e){console.log("===================="+e+"=====================");for(var t=this.first;t;)console.log("{"+t.obj.toString()+"} previous="+(t.prev?t.prev.obj:"NULL")),t=t.next();console.log("==================================="),console.log("Last: {"+(this.last?this.last.obj:"NULL")+"} First: {"+(this.first?this.first.obj:"NULL")+"}")}},t.prototype.constructor=t,vg.LinkedList=t}(),function(){var e=function(e,t,i,s,n){this._listener=t,this.isOnce=i,this.context=s,this.signal=e,this._priority=n||0};e.prototype={active:!0,params:null,execute:function(e){var t,i;return this.active&&this._listener&&(i=this.params?this.params.concat(e):e,t=this._listener.apply(this.context,i),this.isOnce&&this.detach()),t},detach:function(){return this.isBound()?this.signal.remove(this._listener,this.context):null},isBound:function(){return!!this.signal&&!!this._listener},_destroy:function(){delete this.signal,delete this._listener,delete this.context},toString:function(){return"[SignalBinding isOnce:"+this.isOnce+", isBound:"+this.isBound()+", active:"+this.active+"]"}},e.prototype.constructor=e;var t=function(){this._bindings=[],this._prevParams=null;var e=this;this.dispatch=function(){t.prototype.dispatch.apply(e,arguments)}};t.prototype={memorize:!1,_shouldPropagate:!0,active:!0,validateListener:function(e,t){if("function"!=typeof e)throw new Error("Signal: listener is a required param of {fn}() and should be a Function.".replace("{fn}",t))},_registerListener:function(t,i,s,n){var l,r=this._indexOfListener(t,s);if(-1!==r){if(l=this._bindings[r],l.isOnce!==i)throw new Error("You cannot add"+(i?"":"Once")+"() then add"+(i?"Once":"")+"() the same listener without removing the relationship first.")}else l=new e(this,t,i,s,n),this._addBinding(l);return this.memorize&&this._prevParams&&l.execute(this._prevParams),l},_addBinding:function(e){var t=this._bindings.length;do t--;while(this._bindings[t]&&e._priority<=this._bindings[t]._priority);this._bindings.splice(t+1,0,e)},_indexOfListener:function(e,t){for(var i,s=this._bindings.length;s--;)if(i=this._bindings[s],i._listener===e&&i.context===t)return s;return-1},has:function(e,t){return-1!==this._indexOfListener(e,t)},add:function(e,t,i){return this.validateListener(e,"add"),this._registerListener(e,!1,t,i)},addOnce:function(e,t,i){return this.validateListener(e,"addOnce"),this._registerListener(e,!0,t,i)},remove:function(e,t){this.validateListener(e,"remove");var i=this._indexOfListener(e,t);return-1!==i&&(this._bindings[i]._destroy(),this._bindings.splice(i,1)),e},removeAll:function(e){"undefined"==typeof e&&(e=null);for(var t=this._bindings.length;t--;)e?this._bindings[t].context===e&&(this._bindings[t]._destroy(),this._bindings.splice(t,1)):this._bindings[t]._destroy();e||(this._bindings.length=0)},getNumListeners:function(){return this._bindings.length},halt:function(){this._shouldPropagate=!1},dispatch:function(){if(this.active){var e,t=Array.prototype.slice.call(arguments),i=this._bindings.length;if(this.memorize&&(this._prevParams=t),i){e=this._bindings.slice(),this._shouldPropagate=!0;do i--;while(e[i]&&this._shouldPropagate&&e[i].execute(t)!==!1)}}},forget:function(){this._prevParams=null},dispose:function(){this.removeAll(),delete this._bindings,delete this._prevParams},toString:function(){return"[Signal active:"+this.active+" numListeners:"+this.getNumListeners()+"]"}},t.prototype.constructor=t,vg.Signal=t}(),vg.AStarFinder=function(e){e=e||{};var t={allowDiagonal:!1,heuristicFilter:null};t=vg.Tools.merge(t,e),this.allowDiagonal=t.allowDiagonal,this.heuristicFilter=t.heuristicFilter,this.list=new vg.LinkedList},vg.AStarFinder.prototype={findPath:function(e,t,i,s){var n,l,r,h,o,a;for(i=i||this.heuristicFilter,s.clearPath(),this.list.clear(),this.list.add(e);this.list.length>0;){if(this.list.sort(this.compare),n=this.list.shift(),n._visited=!0,n===t)return vg.PathUtil.backtrace(t);for(r=s.getNeighbors(n,this.allowDiagonal,i),o=0,a=r.length;a>o;o++)if(h=r[o],h.walkable&&(l=n._calcCost+s.distance(n,h),!h._visited||le?1:-1,l=s>t?1:-1,o=r-h;e!==i||t!==s;)u.push([e,t]),a=2*o,a>-h&&(o-=h,e+=n),r>a&&(o+=r,t+=l);return u},expandPath:function(e){var t,i,s,n,l,r,h=[],o=e.length;if(2>o)return h;for(l=0;o-1>l;++l)for(t=e[l],i=e[l+1],s=this.interpolate(t[0],t[1],i[0],i[1]),n=s.length,r=0;n-1>r;++r)h.push(s[r]);return h.push(e[o-1]),h},smoothenPath:function(e,t){var i,s,n,l,r,h,o,a,c,u,d,g,p=t.length,v=t[0][0],f=t[0][1],m=t[p-1][0],_=t[p-1][1];for(i=v,s=f,r=[[i,s]],o=2;p>o;++o){for(c=t[o],n=c[0],l=c[1],u=this.interpolate(i,s,n,l),g=!1,a=1;a0?(e=i[0],t=e.object.userData.structure,this.pickedObject!=t&&(this.pickedObject&&this.signal.dispatch(vg.MouseCaster.OUT,this.pickedObject),this.pickedObject=t,this.selectedObject=null,this.signal.dispatch(vg.MouseCaster.OVER,this.pickedObject)),this.position.copy(e.point),this.screenPosition.z=e.distance):(this.pickedObject&&this.signal.dispatch(vg.MouseCaster.OUT,this.pickedObject),this.pickedObject=null,this.selectedObject=null),this.allHits=i}},preventDefault:function(){this._preventDefault=!0},_onDocumentMouseDown:function(e){return e=e||window.event,e.preventDefault(),this._preventDefault?(this._preventDefault=!1,!1):(this.pickedObject&&(this.selectedObject=this.pickedObject),this.shift=e.shiftKey,this.ctrl=e.ctrlKey,this.down=1===e.which,this.rightDown=3===e.which,void this.signal.dispatch(vg.MouseCaster.DOWN,this.pickedObject))},_onDocumentMouseUp:function(e){return e.preventDefault(),this._preventDefault?(this._preventDefault=!1,!1):(this.shift=e.shiftKey,this.ctrl=e.ctrlKey,this.signal.dispatch(vg.MouseCaster.UP,this.pickedObject),this.selectedObject&&this.pickedObject&&this.selectedObject.uniqueID===this.pickedObject.uniqueID&&this.signal.dispatch(vg.MouseCaster.CLICK,this.pickedObject),this.down=1===e.which?!1:this.down,void(this.rightDown=3===e.which?!1:this.rightDown))},_onDocumentMouseMove:function(e){e.preventDefault(),this.screenPosition.x=e.clientX/window.innerWidth*2-1,this.screenPosition.y=2*-(e.clientY/window.innerHeight)+1},_onMouseWheel:function(e){if(this.active){e.preventDefault(),e.stopPropagation();var t=0;void 0!==e.wheelDelta?t=e.wheelDelta:void 0!==e.detail&&(t=-e.detail),t>0?this.wheel++:this.wheel--,this.signal.dispatch(vg.MouseCaster.WHEEL,this.wheel)}}},vg.MouseCaster.prototype.constructor=vg.MouseCaster,vg.Scene=function(e,t){var i={element:document.body,alpha:!0,antialias:!0,clearColor:"#fff",sortObjects:!1,fog:null,light:new THREE.DirectionalLight(16777215),lightPosition:null,cameraType:"PerspectiveCamera",cameraPosition:null,orthoZoom:4},s={minDistance:100,maxDistance:1e3,zoomSpeed:2,noZoom:!1};if(i=vg.Tools.merge(i,e),"boolean"!=typeof t&&(s=vg.Tools.merge(s,t)),this.renderer=new THREE.WebGLRenderer({alpha:i.alpha,antialias:i.antialias}),this.renderer.setClearColor(i.clearColor,0),this.renderer.sortObjects=i.sortObjects,this.width=window.innerWidth,this.height=window.innerHeight,this.orthoZoom=i.orthoZoom,this.container=new THREE.Scene,this.container.fog=i.fog,this.container.add(new THREE.AmbientLight(14540253)),i.lightPosition||i.light.position.set(-1,1,-1).normalize(),this.container.add(i.light),"OrthographicCamera"===i.cameraType){var n=window.innerWidth/this.orthoZoom,l=window.innerHeight/this.orthoZoom;this.camera=new THREE.OrthographicCamera(n/-2,n/2,l/2,l/-2,1,5e3)}else this.camera=new THREE.PerspectiveCamera(50,this.width/this.height,1,5e3);this.contolled=!!t,this.contolled&&(this.controls=new THREE.OrbitControls(this.camera,this.renderer.domElement),this.controls.minDistance=s.minDistance,this.controls.maxDistance=s.maxDistance,this.controls.zoomSpeed=s.zoomSpeed,this.controls.noZoom=s.noZoom),i.cameraPosition&&this.camera.position.copy(i.cameraPosition),window.addEventListener("resize",function(){if(this.width=window.innerWidth,this.height=window.innerHeight,"OrthographicCamera"===this.camera.type){var e=this.width/this.orthoZoom,t=this.height/this.orthoZoom;this.camera.left=e/-2,this.camera.right=e/2,this.camera.top=t/2,this.camera.bottom=t/-2}else this.camera.aspect=this.width/this.height;this.camera.updateProjectionMatrix(),this.renderer.setSize(this.width,this.height)}.bind(this),!1),this.attachTo(i.element)},vg.Scene.prototype={attachTo:function(e){e.style.width=this.width+"px",e.style.height=this.height+"px",this.renderer.setPixelRatio(window.devicePixelRatio),this.renderer.setSize(this.width,this.height),e.appendChild(this.renderer.domElement)},add:function(e){this.container.add(e)},remove:function(e){this.container.remove(e)},render:function(){this.contolled&&this.controls.update(),this.renderer.render(this.container,this.camera)},updateOrthoZoom:function(){if(this.orthoZoom<=0)return void(this.orthoZoom=0);var e=this.width/this.orthoZoom,t=this.height/this.orthoZoom;this.camera.left=e/-2,this.camera.right=e/2,this.camera.top=t/2,this.camera.bottom=t/-2,this.camera.updateProjectionMatrix()},focusOn:function(e){this.camera.lookAt(e.position)}},vg.Scene.prototype.constructor=vg.Scene,vg.SelectionManager=function(e){this.mouse=e,this.onSelect=new vg.Signal,this.onDeselect=new vg.Signal,this.selected=null,this.toggleSelection=!1,this.mouse.signal.add(this.onMouse,this)},vg.SelectionManager.prototype={select:function(e,t){e&&(t=t||!0,this.selected!==e&&this.clearSelection(t),e.selected?this.toggleSelection&&(t&&this.onDeselect.dispatch(e),e.deselect()):e.select(),this.selected=e,t&&this.onSelect.dispatch(e))},clearSelection:function(e){e=e||!0,this.selected&&(e&&this.onDeselect.dispatch(this.selected),this.selected.deselect()),this.selected=null},onMouse:function(e,t){switch(e){case vg.MouseCaster.DOWN:t||this.clearSelection();break;case vg.MouseCaster.CLICK:this.select(t)}}},vg.SelectionManager.prototype.constructor=vg.SelectionManager,vg.Tools={clamp:function(e,t,i){return Math.max(t,Math.min(i,e))},sign:function(e){return e&&e/Math.abs(e)},random:function(e,t){return 1===arguments.length?Math.random()*e-.5*e:Math.random()*(t-e)+e},randomInt:function(e,t){return 1===arguments.length?Math.random()*e-.5*e|0:Math.random()*(t-e+1)+e|0},normalize:function(e,t,i){return(e-t)/(i-t)},getShortRotation:function(e){return e%=this.TAU,e>this.PI?e-=this.TAU:e<-this.PI&&(e+=this.TAU),e},generateID:function(){return Math.random().toString(36).slice(2)+Date.now()},isPlainObject:function(e){if("object"!=typeof e||e.nodeType||e===e.window)return!1;try{if(e.constructor&&!Object.prototype.hasOwnProperty.call(e.constructor.prototype,"isPrototypeOf"))return!1}catch(t){return!1}return!0},merge:function(e,t){var i=this,s=Array.isArray(t),n=s&&[]||{};return s?(e=e||[],n=n.concat(e),t.forEach(function(t,s){"undefined"==typeof n[s]?n[s]=t:i.isPlainObject(t)?n[s]=i.merge(e[s],t):-1===e.indexOf(t)&&n.push(t)}),n):(e&&i.isPlainObject(e)&&Object.keys(e).forEach(function(t){n[t]=e[t]; }),Object.keys(t).forEach(function(s){t[s]&&i.isPlainObject(t[s])&&e[s]?n[s]=i.merge(e[s],t[s]):n[s]=t[s]}),n)},now:function(){return window.nwf?window.nwf.system.Performance.elapsedTime:window.performance.now()},empty:function(e){for(;e.lastChild;)e.removeChild(e.lastChild)},radixSort:function(e,t,i,s){if(t=t||0,i=i||e.length,s=s||31,!(t>=i-1||0>s)){for(var n=t,l=i,r=1<n;)if(e[n]&r){--l;var h=e[n];e[n]=e[l],e[l]=h}else++n;this.radixSort(e,t,l,s-1),this.radixSort(e,l,i,s-1)}},randomizeRGB:function(e,t){var i,s,n=e.split(","),l="rgb(";for(t=this.randomInt(t),i=0;3>i;i++)s=parseInt(n[i])+t,0>s?s=0:s>255&&(s=255),l+=s+",";return l=l.substring(0,l.length-1),l+=")"},getJSON:function(e){var t=new XMLHttpRequest,i="undefined"==typeof e.cache?!1:e.cache,s=i?e.url:e.url+"?t="+Math.floor(1e4*Math.random())+Date.now();t.onreadystatechange=function(){if(200===this.status){var t=null;try{t=JSON.parse(this.responseText)}catch(i){return}return void e.callback.call(e.scope||null,t)}0!==this.status&&console.warn("[Tools.getJSON] Error: "+this.status+" ("+this.statusText+") :: "+e.url)},t.open("GET",s,!0),t.setRequestHeader("Accept","application/json"),t.setRequestHeader("Content-Type","application/json"),t.send("")}}; },{}],10:[function(require,module,exports){ /** * Polyfill for the additional KeyboardEvent properties defined in the D3E and * D4E draft specifications, by @inexorabletash. * * See: https://github.com/inexorabletash/polyfill */ (function(global) { var nativeKeyboardEvent = ('KeyboardEvent' in global); if (!nativeKeyboardEvent) global.KeyboardEvent = function KeyboardEvent() { throw TypeError('Illegal constructor'); }; global.KeyboardEvent.DOM_KEY_LOCATION_STANDARD = 0x00; // Default or unknown location global.KeyboardEvent.DOM_KEY_LOCATION_LEFT = 0x01; // e.g. Left Alt key global.KeyboardEvent.DOM_KEY_LOCATION_RIGHT = 0x02; // e.g. Right Alt key global.KeyboardEvent.DOM_KEY_LOCATION_NUMPAD = 0x03; // e.g. Numpad 0 or + var STANDARD = window.KeyboardEvent.DOM_KEY_LOCATION_STANDARD, LEFT = window.KeyboardEvent.DOM_KEY_LOCATION_LEFT, RIGHT = window.KeyboardEvent.DOM_KEY_LOCATION_RIGHT, NUMPAD = window.KeyboardEvent.DOM_KEY_LOCATION_NUMPAD; //-------------------------------------------------------------------- // // Utilities // //-------------------------------------------------------------------- function contains(s, ss) { return String(s).indexOf(ss) !== -1; } var os = (function() { if (contains(navigator.platform, 'Win')) { return 'win'; } if (contains(navigator.platform, 'Mac')) { return 'mac'; } if (contains(navigator.platform, 'CrOS')) { return 'cros'; } if (contains(navigator.platform, 'Linux')) { return 'linux'; } if (contains(navigator.userAgent, 'iPad') || contains(navigator.platform, 'iPod') || contains(navigator.platform, 'iPhone')) { return 'ios'; } return ''; } ()); var browser = (function() { if (contains(navigator.userAgent, 'Chrome/')) { return 'chrome'; } if (contains(navigator.vendor, 'Apple')) { return 'safari'; } if (contains(navigator.userAgent, 'MSIE')) { return 'ie'; } if (contains(navigator.userAgent, 'Gecko/')) { return 'moz'; } if (contains(navigator.userAgent, 'Opera/')) { return 'opera'; } return ''; } ()); var browser_os = browser + '-' + os; function mergeIf(baseTable, select, table) { if (browser_os === select || browser === select || os === select) { Object.keys(table).forEach(function(keyCode) { baseTable[keyCode] = table[keyCode]; }); } } function remap(o, key) { var r = {}; Object.keys(o).forEach(function(k) { var item = o[k]; if (key in item) { r[item[key]] = item; } }); return r; } function invert(o) { var r = {}; Object.keys(o).forEach(function(k) { r[o[k]] = k; }); return r; } //-------------------------------------------------------------------- // // Generic Mappings // //-------------------------------------------------------------------- // "keyInfo" is a dictionary: // code: string - name from DOM Level 3 KeyboardEvent code Values // https://dvcs.w3.org/hg/dom3events/raw-file/tip/html/DOM3Events-code.html // location (optional): number - one of the DOM_KEY_LOCATION values // keyCap (optional): string - keyboard label in en-US locale // USB code Usage ID from page 0x07 unless otherwise noted (Informative) // Map of keyCode to keyInfo var keyCodeToInfoTable = { // 0x01 - VK_LBUTTON // 0x02 - VK_RBUTTON 0x03: { code: 'Cancel' }, // [USB: 0x9b] char \x0018 ??? (Not in D3E) // 0x04 - VK_MBUTTON // 0x05 - VK_XBUTTON1 // 0x06 - VK_XBUTTON2 0x06: { code: 'Help' }, // [USB: 0x75] ??? // 0x07 - undefined 0x08: { code: 'Backspace' }, // [USB: 0x2a] Labelled Delete on Macintosh keyboards. 0x09: { code: 'Tab' }, // [USB: 0x2b] // 0x0A-0x0B - reserved 0X0C: { code: 'Clear' }, // [USB: 0x9c] NumPad Center (Not in D3E) 0X0D: { code: 'Enter' }, // [USB: 0x28] // 0x0E-0x0F - undefined 0x10: { code: 'Shift' }, 0x11: { code: 'Control' }, 0x12: { code: 'Alt' }, 0x13: { code: 'Pause' }, // [USB: 0x48] 0x14: { code: 'CapsLock' }, // [USB: 0x39] 0x15: { code: 'KanaMode' }, // [USB: 0x88] - "HangulMode" for Korean layout 0x16: { code: 'HangulMode' }, // [USB: 0x90] 0x15 as well in MSDN VK table ??? 0x17: { code: 'JunjaMode' }, // (Not in D3E) 0x18: { code: 'FinalMode' }, // (Not in D3E) 0x19: { code: 'KanjiMode' }, // [USB: 0x91] - "HanjaMode" for Korean layout // 0x1A - undefined 0x1B: { code: 'Escape' }, // [USB: 0x29] 0x1C: { code: 'Convert' }, // [USB: 0x8a] 0x1D: { code: 'NonConvert' }, // [USB: 0x8b] 0x1E: { code: 'Accept' }, // (Not in D3E) 0x1F: { code: 'ModeChange' }, // (Not in D3E) 0x20: { code: 'Space' }, // [USB: 0x2c] 0x21: { code: 'PageUp' }, // [USB: 0x4b] 0x22: { code: 'PageDown' }, // [USB: 0x4e] 0x23: { code: 'End' }, // [USB: 0x4d] 0x24: { code: 'Home' }, // [USB: 0x4a] 0x25: { code: 'ArrowLeft' }, // [USB: 0x50] 0x26: { code: 'ArrowUp' }, // [USB: 0x52] 0x27: { code: 'ArrowRight' }, // [USB: 0x4f] 0x28: { code: 'ArrowDown' }, // [USB: 0x51] 0x29: { code: 'Select' }, // (Not in D3E) 0x2A: { code: 'Print' }, // (Not in D3E) 0x2B: { code: 'Execute' }, // [USB: 0x74] (Not in D3E) 0x2C: { code: 'PrintScreen' }, // [USB: 0x46] 0x2D: { code: 'Insert' }, // [USB: 0x49] 0x2E: { code: 'Delete' }, // [USB: 0x4c] 0x2F: { code: 'Help' }, // [USB: 0x75] ??? 0x30: { code: 'Digit0', keyCap: '0' }, // [USB: 0x27] 0) 0x31: { code: 'Digit1', keyCap: '1' }, // [USB: 0x1e] 1! 0x32: { code: 'Digit2', keyCap: '2' }, // [USB: 0x1f] 2@ 0x33: { code: 'Digit3', keyCap: '3' }, // [USB: 0x20] 3# 0x34: { code: 'Digit4', keyCap: '4' }, // [USB: 0x21] 4$ 0x35: { code: 'Digit5', keyCap: '5' }, // [USB: 0x22] 5% 0x36: { code: 'Digit6', keyCap: '6' }, // [USB: 0x23] 6^ 0x37: { code: 'Digit7', keyCap: '7' }, // [USB: 0x24] 7& 0x38: { code: 'Digit8', keyCap: '8' }, // [USB: 0x25] 8* 0x39: { code: 'Digit9', keyCap: '9' }, // [USB: 0x26] 9( // 0x3A-0x40 - undefined 0x41: { code: 'KeyA', keyCap: 'a' }, // [USB: 0x04] 0x42: { code: 'KeyB', keyCap: 'b' }, // [USB: 0x05] 0x43: { code: 'KeyC', keyCap: 'c' }, // [USB: 0x06] 0x44: { code: 'KeyD', keyCap: 'd' }, // [USB: 0x07] 0x45: { code: 'KeyE', keyCap: 'e' }, // [USB: 0x08] 0x46: { code: 'KeyF', keyCap: 'f' }, // [USB: 0x09] 0x47: { code: 'KeyG', keyCap: 'g' }, // [USB: 0x0a] 0x48: { code: 'KeyH', keyCap: 'h' }, // [USB: 0x0b] 0x49: { code: 'KeyI', keyCap: 'i' }, // [USB: 0x0c] 0x4A: { code: 'KeyJ', keyCap: 'j' }, // [USB: 0x0d] 0x4B: { code: 'KeyK', keyCap: 'k' }, // [USB: 0x0e] 0x4C: { code: 'KeyL', keyCap: 'l' }, // [USB: 0x0f] 0x4D: { code: 'KeyM', keyCap: 'm' }, // [USB: 0x10] 0x4E: { code: 'KeyN', keyCap: 'n' }, // [USB: 0x11] 0x4F: { code: 'KeyO', keyCap: 'o' }, // [USB: 0x12] 0x50: { code: 'KeyP', keyCap: 'p' }, // [USB: 0x13] 0x51: { code: 'KeyQ', keyCap: 'q' }, // [USB: 0x14] 0x52: { code: 'KeyR', keyCap: 'r' }, // [USB: 0x15] 0x53: { code: 'KeyS', keyCap: 's' }, // [USB: 0x16] 0x54: { code: 'KeyT', keyCap: 't' }, // [USB: 0x17] 0x55: { code: 'KeyU', keyCap: 'u' }, // [USB: 0x18] 0x56: { code: 'KeyV', keyCap: 'v' }, // [USB: 0x19] 0x57: { code: 'KeyW', keyCap: 'w' }, // [USB: 0x1a] 0x58: { code: 'KeyX', keyCap: 'x' }, // [USB: 0x1b] 0x59: { code: 'KeyY', keyCap: 'y' }, // [USB: 0x1c] 0x5A: { code: 'KeyZ', keyCap: 'z' }, // [USB: 0x1d] 0x5B: { code: 'OSLeft', location: LEFT }, // [USB: 0xe3] 0x5C: { code: 'OSRight', location: RIGHT }, // [USB: 0xe7] 0x5D: { code: 'ContextMenu' }, // [USB: 0x65] Context Menu // 0x5E - reserved 0x5F: { code: 'Standby' }, // [USB: 0x82] Sleep 0x60: { code: 'Numpad0', keyCap: '0', location: NUMPAD }, // [USB: 0x62] 0x61: { code: 'Numpad1', keyCap: '1', location: NUMPAD }, // [USB: 0x59] 0x62: { code: 'Numpad2', keyCap: '2', location: NUMPAD }, // [USB: 0x5a] 0x63: { code: 'Numpad3', keyCap: '3', location: NUMPAD }, // [USB: 0x5b] 0x64: { code: 'Numpad4', keyCap: '4', location: NUMPAD }, // [USB: 0x5c] 0x65: { code: 'Numpad5', keyCap: '5', location: NUMPAD }, // [USB: 0x5d] 0x66: { code: 'Numpad6', keyCap: '6', location: NUMPAD }, // [USB: 0x5e] 0x67: { code: 'Numpad7', keyCap: '7', location: NUMPAD }, // [USB: 0x5f] 0x68: { code: 'Numpad8', keyCap: '8', location: NUMPAD }, // [USB: 0x60] 0x69: { code: 'Numpad9', keyCap: '9', location: NUMPAD }, // [USB: 0x61] 0x6A: { code: 'NumpadMultiply', keyCap: '*', location: NUMPAD }, // [USB: 0x55] 0x6B: { code: 'NumpadAdd', keyCap: '+', location: NUMPAD }, // [USB: 0x57] 0x6C: { code: 'NumpadComma', keyCap: ',', location: NUMPAD }, // [USB: 0x85] 0x6D: { code: 'NumpadSubtract', keyCap: '-', location: NUMPAD }, // [USB: 0x56] 0x6E: { code: 'NumpadDecimal', keyCap: '.', location: NUMPAD }, // [USB: 0x63] 0x6F: { code: 'NumpadDivide', keyCap: '/', location: NUMPAD }, // [USB: 0x54] 0x70: { code: 'F1' }, // [USB: 0x3a] 0x71: { code: 'F2' }, // [USB: 0x3b] 0x72: { code: 'F3' }, // [USB: 0x3c] 0x73: { code: 'F4' }, // [USB: 0x3d] 0x74: { code: 'F5' }, // [USB: 0x3e] 0x75: { code: 'F6' }, // [USB: 0x3f] 0x76: { code: 'F7' }, // [USB: 0x40] 0x77: { code: 'F8' }, // [USB: 0x41] 0x78: { code: 'F9' }, // [USB: 0x42] 0x79: { code: 'F10' }, // [USB: 0x43] 0x7A: { code: 'F11' }, // [USB: 0x44] 0x7B: { code: 'F12' }, // [USB: 0x45] 0x7C: { code: 'F13' }, // [USB: 0x68] 0x7D: { code: 'F14' }, // [USB: 0x69] 0x7E: { code: 'F15' }, // [USB: 0x6a] 0x7F: { code: 'F16' }, // [USB: 0x6b] 0x80: { code: 'F17' }, // [USB: 0x6c] 0x81: { code: 'F18' }, // [USB: 0x6d] 0x82: { code: 'F19' }, // [USB: 0x6e] 0x83: { code: 'F20' }, // [USB: 0x6f] 0x84: { code: 'F21' }, // [USB: 0x70] 0x85: { code: 'F22' }, // [USB: 0x71] 0x86: { code: 'F23' }, // [USB: 0x72] 0x87: { code: 'F24' }, // [USB: 0x73] // 0x88-0x8F - unassigned 0x90: { code: 'NumLock', location: NUMPAD }, // [USB: 0x53] 0x91: { code: 'ScrollLock' }, // [USB: 0x47] // 0x92-0x96 - OEM specific // 0x97-0x9F - unassigned // NOTE: 0xA0-0xA5 usually mapped to 0x10-0x12 in browsers 0xA0: { code: 'ShiftLeft', location: LEFT }, // [USB: 0xe1] 0xA1: { code: 'ShiftRight', location: RIGHT }, // [USB: 0xe5] 0xA2: { code: 'ControlLeft', location: LEFT }, // [USB: 0xe0] 0xA3: { code: 'ControlRight', location: RIGHT }, // [USB: 0xe4] 0xA4: { code: 'AltLeft', location: LEFT }, // [USB: 0xe2] 0xA5: { code: 'AltRight', location: RIGHT }, // [USB: 0xe6] 0xA6: { code: 'BrowserBack' }, // [USB: 0x0c/0x0224] 0xA7: { code: 'BrowserForward' }, // [USB: 0x0c/0x0225] 0xA8: { code: 'BrowserRefresh' }, // [USB: 0x0c/0x0227] 0xA9: { code: 'BrowserStop' }, // [USB: 0x0c/0x0226] 0xAA: { code: 'BrowserSearch' }, // [USB: 0x0c/0x0221] 0xAB: { code: 'BrowserFavorites' }, // [USB: 0x0c/0x0228] 0xAC: { code: 'BrowserHome' }, // [USB: 0x0c/0x0222] 0xAD: { code: 'VolumeMute' }, // [USB: 0x7f] 0xAE: { code: 'VolumeDown' }, // [USB: 0x81] 0xAF: { code: 'VolumeUp' }, // [USB: 0x80] 0xB0: { code: 'MediaTrackNext' }, // [USB: 0x0c/0x00b5] 0xB1: { code: 'MediaTrackPrevious' }, // [USB: 0x0c/0x00b6] 0xB2: { code: 'MediaStop' }, // [USB: 0x0c/0x00b7] 0xB3: { code: 'MediaPlayPause' }, // [USB: 0x0c/0x00cd] 0xB4: { code: 'LaunchMail' }, // [USB: 0x0c/0x018a] 0xB5: { code: 'MediaSelect' }, 0xB6: { code: 'LaunchApp1' }, 0xB7: { code: 'LaunchApp2' }, // 0xB8-0xB9 - reserved 0xBA: { code: 'Semicolon', keyCap: ';' }, // [USB: 0x33] ;: (US Standard 101) 0xBB: { code: 'Equal', keyCap: '=' }, // [USB: 0x2e] =+ 0xBC: { code: 'Comma', keyCap: ',' }, // [USB: 0x36] ,< 0xBD: { code: 'Minus', keyCap: '-' }, // [USB: 0x2d] -_ 0xBE: { code: 'Period', keyCap: '.' }, // [USB: 0x37] .> 0xBF: { code: 'Slash', keyCap: '/' }, // [USB: 0x38] /? (US Standard 101) 0xC0: { code: 'Backquote', keyCap: '`' }, // [USB: 0x35] `~ (US Standard 101) // 0xC1-0xCF - reserved // 0xD0-0xD7 - reserved // 0xD8-0xDA - unassigned 0xDB: { code: 'BracketLeft', keyCap: '[' }, // [USB: 0x2f] [{ (US Standard 101) 0xDC: { code: 'Backslash', keyCap: '\\' }, // [USB: 0x31] \| (US Standard 101) 0xDD: { code: 'BracketRight', keyCap: ']' }, // [USB: 0x30] ]} (US Standard 101) 0xDE: { code: 'Quote', keyCap: '\'' }, // [USB: 0x34] '" (US Standard 101) // 0xDF - miscellaneous/varies // 0xE0 - reserved // 0xE1 - OEM specific 0xE2: { code: 'IntlBackslash', keyCap: '\\' }, // [USB: 0x64] \| (UK Standard 102) // 0xE3-0xE4 - OEM specific 0xE5: { code: 'Process' }, // (Not in D3E) // 0xE6 - OEM specific // 0xE7 - VK_PACKET // 0xE8 - unassigned // 0xE9-0xEF - OEM specific // 0xF0-0xF5 - OEM specific 0xF6: { code: 'Attn' }, // [USB: 0x9a] (Not in D3E) 0xF7: { code: 'CrSel' }, // [USB: 0xa3] (Not in D3E) 0xF8: { code: 'ExSel' }, // [USB: 0xa4] (Not in D3E) 0xF9: { code: 'EraseEof' }, // (Not in D3E) 0xFA: { code: 'Play' }, // (Not in D3E) 0xFB: { code: 'ZoomToggle' }, // (Not in D3E) // 0xFC - VK_NONAME - reserved // 0xFD - VK_PA1 0xFE: { code: 'Clear' } // [USB: 0x9c] (Not in D3E) }; // No legacy keyCode, but listed in D3E: // code: usb // 'IntlHash': 0x070032, // 'IntlRo': 0x070087, // 'IntlYen': 0x070089, // 'NumpadBackspace': 0x0700bb, // 'NumpadClear': 0x0700d8, // 'NumpadClearEntry': 0x0700d9, // 'NumpadMemoryAdd': 0x0700d3, // 'NumpadMemoryClear': 0x0700d2, // 'NumpadMemoryRecall': 0x0700d1, // 'NumpadMemoryStore': 0x0700d0, // 'NumpadMemorySubtract': 0x0700d4, // 'NumpadParenLeft': 0x0700b6, // 'NumpadParenRight': 0x0700b7, //-------------------------------------------------------------------- // // Browser/OS Specific Mappings // //-------------------------------------------------------------------- mergeIf(keyCodeToInfoTable, 'moz', { 0x3B: { code: 'Semicolon', keyCap: ';' }, // [USB: 0x33] ;: (US Standard 101) 0x3D: { code: 'Equal', keyCap: '=' }, // [USB: 0x2e] =+ 0x6B: { code: 'Equal', keyCap: '=' }, // [USB: 0x2e] =+ 0x6D: { code: 'Minus', keyCap: '-' }, // [USB: 0x2d] -_ 0xBB: { code: 'NumpadAdd', keyCap: '+', location: NUMPAD }, // [USB: 0x57] 0xBD: { code: 'NumpadSubtract', keyCap: '-', location: NUMPAD } // [USB: 0x56] }); mergeIf(keyCodeToInfoTable, 'moz-mac', { 0x0C: { code: 'NumLock', location: NUMPAD }, // [USB: 0x53] 0xAD: { code: 'Minus', keyCap: '-' } // [USB: 0x2d] -_ }); mergeIf(keyCodeToInfoTable, 'moz-win', { 0xAD: { code: 'Minus', keyCap: '-' } // [USB: 0x2d] -_ }); mergeIf(keyCodeToInfoTable, 'chrome-mac', { 0x5D: { code: 'OSRight', location: RIGHT } // [USB: 0xe7] }); // Windows via Bootcamp (!) if (0) { mergeIf(keyCodeToInfoTable, 'chrome-win', { 0xC0: { code: 'Quote', keyCap: '\'' }, // [USB: 0x34] '" (US Standard 101) 0xDE: { code: 'Backslash', keyCap: '\\' }, // [USB: 0x31] \| (US Standard 101) 0xDF: { code: 'Backquote', keyCap: '`' } // [USB: 0x35] `~ (US Standard 101) }); mergeIf(keyCodeToInfoTable, 'ie', { 0xC0: { code: 'Quote', keyCap: '\'' }, // [USB: 0x34] '" (US Standard 101) 0xDE: { code: 'Backslash', keyCap: '\\' }, // [USB: 0x31] \| (US Standard 101) 0xDF: { code: 'Backquote', keyCap: '`' } // [USB: 0x35] `~ (US Standard 101) }); } mergeIf(keyCodeToInfoTable, 'safari', { 0x03: { code: 'Enter' }, // [USB: 0x28] old Safari 0x19: { code: 'Tab' } // [USB: 0x2b] old Safari for Shift+Tab }); mergeIf(keyCodeToInfoTable, 'ios', { 0x0A: { code: 'Enter', location: STANDARD } // [USB: 0x28] }); mergeIf(keyCodeToInfoTable, 'safari-mac', { 0x5B: { code: 'OSLeft', location: LEFT }, // [USB: 0xe3] 0x5D: { code: 'OSRight', location: RIGHT }, // [USB: 0xe7] 0xE5: { code: 'KeyQ', keyCap: 'Q' } // [USB: 0x14] On alternate presses, Ctrl+Q sends this }); //-------------------------------------------------------------------- // // Identifier Mappings // //-------------------------------------------------------------------- // Cases where newer-ish browsers send keyIdentifier which can be // used to disambiguate keys. // keyIdentifierTable[keyIdentifier] -> keyInfo var keyIdentifierTable = {}; if ('cros' === os) { keyIdentifierTable['U+00A0'] = { code: 'ShiftLeft', location: LEFT }; keyIdentifierTable['U+00A1'] = { code: 'ShiftRight', location: RIGHT }; keyIdentifierTable['U+00A2'] = { code: 'ControlLeft', location: LEFT }; keyIdentifierTable['U+00A3'] = { code: 'ControlRight', location: RIGHT }; keyIdentifierTable['U+00A4'] = { code: 'AltLeft', location: LEFT }; keyIdentifierTable['U+00A5'] = { code: 'AltRight', location: RIGHT }; } if ('chrome-mac' === browser_os) { keyIdentifierTable['U+0010'] = { code: 'ContextMenu' }; } if ('safari-mac' === browser_os) { keyIdentifierTable['U+0010'] = { code: 'ContextMenu' }; } if ('ios' === os) { // These only generate keyup events keyIdentifierTable['U+0010'] = { code: 'Function' }; keyIdentifierTable['U+001C'] = { code: 'ArrowLeft' }; keyIdentifierTable['U+001D'] = { code: 'ArrowRight' }; keyIdentifierTable['U+001E'] = { code: 'ArrowUp' }; keyIdentifierTable['U+001F'] = { code: 'ArrowDown' }; keyIdentifierTable['U+0001'] = { code: 'Home' }; // [USB: 0x4a] Fn + ArrowLeft keyIdentifierTable['U+0004'] = { code: 'End' }; // [USB: 0x4d] Fn + ArrowRight keyIdentifierTable['U+000B'] = { code: 'PageUp' }; // [USB: 0x4b] Fn + ArrowUp keyIdentifierTable['U+000C'] = { code: 'PageDown' }; // [USB: 0x4e] Fn + ArrowDown } //-------------------------------------------------------------------- // // Location Mappings // //-------------------------------------------------------------------- // Cases where newer-ish browsers send location/keyLocation which // can be used to disambiguate keys. // locationTable[location][keyCode] -> keyInfo var locationTable = []; locationTable[LEFT] = { 0x10: { code: 'ShiftLeft', location: LEFT }, // [USB: 0xe1] 0x11: { code: 'ControlLeft', location: LEFT }, // [USB: 0xe0] 0x12: { code: 'AltLeft', location: LEFT } // [USB: 0xe2] }; locationTable[RIGHT] = { 0x10: { code: 'ShiftRight', location: RIGHT }, // [USB: 0xe5] 0x11: { code: 'ControlRight', location: RIGHT }, // [USB: 0xe4] 0x12: { code: 'AltRight', location: RIGHT } // [USB: 0xe6] }; locationTable[NUMPAD] = { 0x0D: { code: 'NumpadEnter', location: NUMPAD } // [USB: 0x58] }; mergeIf(locationTable[NUMPAD], 'moz', { 0x6D: { code: 'NumpadSubtract', location: NUMPAD }, // [USB: 0x56] 0x6B: { code: 'NumpadAdd', location: NUMPAD } // [USB: 0x57] }); mergeIf(locationTable[LEFT], 'moz-mac', { 0xE0: { code: 'OSLeft', location: LEFT } // [USB: 0xe3] }); mergeIf(locationTable[RIGHT], 'moz-mac', { 0xE0: { code: 'OSRight', location: RIGHT } // [USB: 0xe7] }); mergeIf(locationTable[RIGHT], 'moz-win', { 0x5B: { code: 'OSRight', location: RIGHT } // [USB: 0xe7] }); mergeIf(locationTable[RIGHT], 'mac', { 0x5D: { code: 'OSRight', location: RIGHT } // [USB: 0xe7] }); mergeIf(locationTable[NUMPAD], 'chrome-mac', { 0x0C: { code: 'NumLock', location: NUMPAD } // [USB: 0x53] }); mergeIf(locationTable[NUMPAD], 'safari-mac', { 0x0C: { code: 'NumLock', location: NUMPAD }, // [USB: 0x53] 0xBB: { code: 'NumpadAdd', location: NUMPAD }, // [USB: 0x57] 0xBD: { code: 'NumpadSubtract', location: NUMPAD }, // [USB: 0x56] 0xBE: { code: 'NumpadDecimal', location: NUMPAD }, // [USB: 0x63] 0xBF: { code: 'NumpadDivide', location: NUMPAD } // [USB: 0x54] }); //-------------------------------------------------------------------- // // Key Values // //-------------------------------------------------------------------- // Mapping from `code` values to `key` values. Values defined at: // https://dvcs.w3.org/hg/dom3events/raw-file/tip/html/DOM3Events-key.html // Entries are only provided when `key` differs from `code`. If // printable, `shiftKey` has the shifted printable character. This // assumes US Standard 101 layout var codeToKeyTable = { // Modifier Keys ShiftLeft: { key: 'Shift' }, ShiftRight: { key: 'Shift' }, ControlLeft: { key: 'Control' }, ControlRight: { key: 'Control' }, AltLeft: { key: 'Alt' }, AltRight: { key: 'Alt' }, OSLeft: { key: 'OS' }, OSRight: { key: 'OS' }, // Whitespace Keys NumpadEnter: { key: 'Enter' }, Space: { key: ' ' }, // Printable Keys Digit0: { key: '0', shiftKey: ')' }, Digit1: { key: '1', shiftKey: '!' }, Digit2: { key: '2', shiftKey: '@' }, Digit3: { key: '3', shiftKey: '#' }, Digit4: { key: '4', shiftKey: '$' }, Digit5: { key: '5', shiftKey: '%' }, Digit6: { key: '6', shiftKey: '^' }, Digit7: { key: '7', shiftKey: '&' }, Digit8: { key: '8', shiftKey: '*' }, Digit9: { key: '9', shiftKey: '(' }, KeyA: { key: 'a', shiftKey: 'A' }, KeyB: { key: 'b', shiftKey: 'B' }, KeyC: { key: 'c', shiftKey: 'C' }, KeyD: { key: 'd', shiftKey: 'D' }, KeyE: { key: 'e', shiftKey: 'E' }, KeyF: { key: 'f', shiftKey: 'F' }, KeyG: { key: 'g', shiftKey: 'G' }, KeyH: { key: 'h', shiftKey: 'H' }, KeyI: { key: 'i', shiftKey: 'I' }, KeyJ: { key: 'j', shiftKey: 'J' }, KeyK: { key: 'k', shiftKey: 'K' }, KeyL: { key: 'l', shiftKey: 'L' }, KeyM: { key: 'm', shiftKey: 'M' }, KeyN: { key: 'n', shiftKey: 'N' }, KeyO: { key: 'o', shiftKey: 'O' }, KeyP: { key: 'p', shiftKey: 'P' }, KeyQ: { key: 'q', shiftKey: 'Q' }, KeyR: { key: 'r', shiftKey: 'R' }, KeyS: { key: 's', shiftKey: 'S' }, KeyT: { key: 't', shiftKey: 'T' }, KeyU: { key: 'u', shiftKey: 'U' }, KeyV: { key: 'v', shiftKey: 'V' }, KeyW: { key: 'w', shiftKey: 'W' }, KeyX: { key: 'x', shiftKey: 'X' }, KeyY: { key: 'y', shiftKey: 'Y' }, KeyZ: { key: 'z', shiftKey: 'Z' }, Numpad0: { key: '0' }, Numpad1: { key: '1' }, Numpad2: { key: '2' }, Numpad3: { key: '3' }, Numpad4: { key: '4' }, Numpad5: { key: '5' }, Numpad6: { key: '6' }, Numpad7: { key: '7' }, Numpad8: { key: '8' }, Numpad9: { key: '9' }, NumpadMultiply: { key: '*' }, NumpadAdd: { key: '+' }, NumpadComma: { key: ',' }, NumpadSubtract: { key: '-' }, NumpadDecimal: { key: '.' }, NumpadDivide: { key: '/' }, Semicolon: { key: ';', shiftKey: ':' }, Equal: { key: '=', shiftKey: '+' }, Comma: { key: ',', shiftKey: '<' }, Minus: { key: '-', shiftKey: '_' }, Period: { key: '.', shiftKey: '>' }, Slash: { key: '/', shiftKey: '?' }, Backquote: { key: '`', shiftKey: '~' }, BracketLeft: { key: '[', shiftKey: '{' }, Backslash: { key: '\\', shiftKey: '|' }, BracketRight: { key: ']', shiftKey: '}' }, Quote: { key: '\'', shiftKey: '"' }, IntlBackslash: { key: '\\', shiftKey: '|' } }; mergeIf(codeToKeyTable, 'mac', { OSLeft: { key: 'Meta' }, OSRight: { key: 'Meta' } }); // Corrections for 'key' names in older browsers (e.g. FF36-) // https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent.key#Key_values var keyFixTable = { Esc: 'Escape', Nonconvert: 'NonConvert', Left: 'ArrowLeft', Up: 'ArrowUp', Right: 'ArrowRight', Down: 'ArrowDown', Del: 'Delete', Menu: 'ContextMenu', MediaNextTrack: 'MediaTrackNext', MediaPreviousTrack: 'MediaTrackPrevious', SelectMedia: 'MediaSelect', HalfWidth: 'Hankaku', FullWidth: 'Zenkaku', RomanCharacters: 'Romaji', Crsel: 'CrSel', Exsel: 'ExSel', Zoom: 'ZoomToggle' }; //-------------------------------------------------------------------- // // Exported Functions // //-------------------------------------------------------------------- var codeTable = remap(keyCodeToInfoTable, 'code'); try { var nativeLocation = nativeKeyboardEvent && ('location' in new KeyboardEvent('')); } catch (_) {} function keyInfoForEvent(event) { var keyCode = 'keyCode' in event ? event.keyCode : 'which' in event ? event.which : 0; var keyInfo = (function(){ if (nativeLocation || 'keyLocation' in event) { var location = nativeLocation ? event.location : event.keyLocation; if (location && keyCode in locationTable[location]) { return locationTable[location][keyCode]; } } if ('keyIdentifier' in event && event.keyIdentifier in keyIdentifierTable) { return keyIdentifierTable[event.keyIdentifier]; } if (keyCode in keyCodeToInfoTable) { return keyCodeToInfoTable[keyCode]; } return null; }()); // TODO: Track these down and move to general tables if (0) { // TODO: Map these for newerish browsers? // TODO: iOS only? // TODO: Override with more common keyIdentifier name? switch (event.keyIdentifier) { case 'U+0010': keyInfo = { code: 'Function' }; break; case 'U+001C': keyInfo = { code: 'ArrowLeft' }; break; case 'U+001D': keyInfo = { code: 'ArrowRight' }; break; case 'U+001E': keyInfo = { code: 'ArrowUp' }; break; case 'U+001F': keyInfo = { code: 'ArrowDown' }; break; } } if (!keyInfo) return null; var key = (function() { var entry = codeToKeyTable[keyInfo.code]; if (!entry) return keyInfo.code; return (event.shiftKey && 'shiftKey' in entry) ? entry.shiftKey : entry.key; }()); return { code: keyInfo.code, key: key, location: keyInfo.location, keyCap: keyInfo.keyCap }; } function queryKeyCap(code, locale) { code = String(code); if (!codeTable.hasOwnProperty(code)) return 'Undefined'; if (locale && String(locale).toLowerCase() !== 'en-us') throw Error('Unsupported locale'); var keyInfo = codeTable[code]; return keyInfo.keyCap || keyInfo.code || 'Undefined'; } if ('KeyboardEvent' in global && 'defineProperty' in Object) { (function() { function define(o, p, v) { if (p in o) return; Object.defineProperty(o, p, v); } define(KeyboardEvent.prototype, 'code', { get: function() { var keyInfo = keyInfoForEvent(this); return keyInfo ? keyInfo.code : ''; }}); // Fix for nonstandard `key` values (FF36-) if ('key' in KeyboardEvent.prototype) { var desc = Object.getOwnPropertyDescriptor(KeyboardEvent.prototype, 'key'); Object.defineProperty(KeyboardEvent.prototype, 'key', { get: function() { var key = desc.get.call(this); return keyFixTable.hasOwnProperty(key) ? keyFixTable[key] : key; }}); } define(KeyboardEvent.prototype, 'key', { get: function() { var keyInfo = keyInfoForEvent(this); return (keyInfo && 'key' in keyInfo) ? keyInfo.key : 'Unidentified'; }}); define(KeyboardEvent.prototype, 'location', { get: function() { var keyInfo = keyInfoForEvent(this); return (keyInfo && 'location' in keyInfo) ? keyInfo.location : STANDARD; }}); define(KeyboardEvent.prototype, 'locale', { get: function() { return ''; }}); }()); } if (!('queryKeyCap' in global.KeyboardEvent)) global.KeyboardEvent.queryKeyCap = queryKeyCap; // Helper for IE8- global.identifyKey = function(event) { if ('code' in event) return; var keyInfo = keyInfoForEvent(event); event.code = keyInfo ? keyInfo.code : ''; event.key = (keyInfo && 'key' in keyInfo) ? keyInfo.key : 'Unidentified'; event.location = ('location' in event) ? event.location : ('keyLocation' in event) ? event.keyLocation : (keyInfo && 'location' in keyInfo) ? keyInfo.location : STANDARD; event.locale = ''; }; } (window)); },{}],11:[function(require,module,exports){ var CANNON = require('cannon'), math = require('./src/components/math'); module.exports = { 'dynamic-body': require('./src/components/body/dynamic-body'), 'static-body': require('./src/components/body/static-body'), 'constraint': require('./src/components/constraint'), 'system': require('./src/system/physics'), registerAll: function (AFRAME) { if (this._registered) return; AFRAME = AFRAME || window.AFRAME; math.registerAll(); if (!AFRAME.systems.physics) AFRAME.registerSystem('physics', this.system); if (!AFRAME.components['dynamic-body']) AFRAME.registerComponent('dynamic-body', this['dynamic-body']); if (!AFRAME.components['static-body']) AFRAME.registerComponent('static-body', this['static-body']); if (!AFRAME.components['constraint']) AFRAME.registerComponent('constraint', this['constraint']); this._registered = true; } }; // Export CANNON.js. window.CANNON = window.CANNON || CANNON; },{"./src/components/body/dynamic-body":14,"./src/components/body/static-body":15,"./src/components/constraint":16,"./src/components/math":17,"./src/system/physics":21,"cannon":23}],12:[function(require,module,exports){ /** * CANNON.shape2mesh * * Source: http://schteppe.github.io/cannon.js/build/cannon.demo.js * Author: @schteppe */ var CANNON = require('cannon'); CANNON.shape2mesh = function(body){ var obj = new THREE.Object3D(); for (var l = 0; l < body.shapes.length; l++) { var shape = body.shapes[l]; var mesh; switch(shape.type){ case CANNON.Shape.types.SPHERE: var sphere_geometry = new THREE.SphereGeometry( shape.radius, 8, 8); mesh = new THREE.Mesh( sphere_geometry, this.currentMaterial ); break; case CANNON.Shape.types.PARTICLE: mesh = new THREE.Mesh( this.particleGeo, this.particleMaterial ); var s = this.settings; mesh.scale.set(s.particleSize,s.particleSize,s.particleSize); break; case CANNON.Shape.types.PLANE: var geometry = new THREE.PlaneGeometry(10, 10, 4, 4); mesh = new THREE.Object3D(); var submesh = new THREE.Object3D(); var ground = new THREE.Mesh( geometry, this.currentMaterial ); ground.scale.set(100, 100, 100); submesh.add(ground); ground.castShadow = true; ground.receiveShadow = true; mesh.add(submesh); break; case CANNON.Shape.types.BOX: var box_geometry = new THREE.BoxGeometry( shape.halfExtents.x*2, shape.halfExtents.y*2, shape.halfExtents.z*2 ); mesh = new THREE.Mesh( box_geometry, this.currentMaterial ); break; case CANNON.Shape.types.CONVEXPOLYHEDRON: var geo = new THREE.Geometry(); // Add vertices for (var i = 0; i < shape.vertices.length; i++) { var v = shape.vertices[i]; geo.vertices.push(new THREE.Vector3(v.x, v.y, v.z)); } for(var i=0; i < shape.faces.length; i++){ var face = shape.faces[i]; // add triangles var a = face[0]; for (var j = 1; j < face.length - 1; j++) { var b = face[j]; var c = face[j + 1]; geo.faces.push(new THREE.Face3(a, b, c)); } } geo.computeBoundingSphere(); geo.computeFaceNormals(); mesh = new THREE.Mesh( geo, this.currentMaterial ); break; case CANNON.Shape.types.HEIGHTFIELD: var geometry = new THREE.Geometry(); var v0 = new CANNON.Vec3(); var v1 = new CANNON.Vec3(); var v2 = new CANNON.Vec3(); for (var xi = 0; xi < shape.data.length - 1; xi++) { for (var yi = 0; yi < shape.data[xi].length - 1; yi++) { for (var k = 0; k < 2; k++) { shape.getConvexTrianglePillar(xi, yi, k===0); v0.copy(shape.pillarConvex.vertices[0]); v1.copy(shape.pillarConvex.vertices[1]); v2.copy(shape.pillarConvex.vertices[2]); v0.vadd(shape.pillarOffset, v0); v1.vadd(shape.pillarOffset, v1); v2.vadd(shape.pillarOffset, v2); geometry.vertices.push( new THREE.Vector3(v0.x, v0.y, v0.z), new THREE.Vector3(v1.x, v1.y, v1.z), new THREE.Vector3(v2.x, v2.y, v2.z) ); var i = geometry.vertices.length - 3; geometry.faces.push(new THREE.Face3(i, i+1, i+2)); } } } geometry.computeBoundingSphere(); geometry.computeFaceNormals(); mesh = new THREE.Mesh(geometry, this.currentMaterial); break; case CANNON.Shape.types.TRIMESH: var geometry = new THREE.Geometry(); var v0 = new CANNON.Vec3(); var v1 = new CANNON.Vec3(); var v2 = new CANNON.Vec3(); for (var i = 0; i < shape.indices.length / 3; i++) { shape.getTriangleVertices(i, v0, v1, v2); geometry.vertices.push( new THREE.Vector3(v0.x, v0.y, v0.z), new THREE.Vector3(v1.x, v1.y, v1.z), new THREE.Vector3(v2.x, v2.y, v2.z) ); var j = geometry.vertices.length - 3; geometry.faces.push(new THREE.Face3(j, j+1, j+2)); } geometry.computeBoundingSphere(); geometry.computeFaceNormals(); mesh = new THREE.Mesh(geometry, this.currentMaterial); break; default: throw "Visual type not recognized: "+shape.type; } mesh.receiveShadow = true; mesh.castShadow = true; if(mesh.children){ for(var i=0; i u.x){ u.x = p.x; } if(p.x < l.x){ l.x = p.x; } if(p.y > u.y){ u.y = p.y; } if(p.y < l.y){ l.y = p.y; } if(p.z > u.z){ u.z = p.z; } if(p.z < l.z){ l.z = p.z; } } // Add offset if (position) { position.vadd(l, l); position.vadd(u, u); } if(skinSize){ l.x -= skinSize; l.y -= skinSize; l.z -= skinSize; u.x += skinSize; u.y += skinSize; u.z += skinSize; } return this; }; /** * Copy bounds from an AABB to this AABB * @method copy * @param {AABB} aabb Source to copy from * @return {AABB} The this object, for chainability */ AABB.prototype.copy = function(aabb){ this.lowerBound.copy(aabb.lowerBound); this.upperBound.copy(aabb.upperBound); return this; }; /** * Clone an AABB * @method clone */ AABB.prototype.clone = function(){ return new AABB().copy(this); }; /** * Extend this AABB so that it covers the given AABB too. * @method extend * @param {AABB} aabb */ AABB.prototype.extend = function(aabb){ this.lowerBound.x = Math.min(this.lowerBound.x, aabb.lowerBound.x); this.upperBound.x = Math.max(this.upperBound.x, aabb.upperBound.x); this.lowerBound.y = Math.min(this.lowerBound.y, aabb.lowerBound.y); this.upperBound.y = Math.max(this.upperBound.y, aabb.upperBound.y); this.lowerBound.z = Math.min(this.lowerBound.z, aabb.lowerBound.z); this.upperBound.z = Math.max(this.upperBound.z, aabb.upperBound.z); }; /** * Returns true if the given AABB overlaps this AABB. * @method overlaps * @param {AABB} aabb * @return {Boolean} */ AABB.prototype.overlaps = function(aabb){ var l1 = this.lowerBound, u1 = this.upperBound, l2 = aabb.lowerBound, u2 = aabb.upperBound; // l2 u2 // |---------| // |--------| // l1 u1 var overlapsX = ((l2.x <= u1.x && u1.x <= u2.x) || (l1.x <= u2.x && u2.x <= u1.x)); var overlapsY = ((l2.y <= u1.y && u1.y <= u2.y) || (l1.y <= u2.y && u2.y <= u1.y)); var overlapsZ = ((l2.z <= u1.z && u1.z <= u2.z) || (l1.z <= u2.z && u2.z <= u1.z)); return overlapsX && overlapsY && overlapsZ; }; // Mostly for debugging AABB.prototype.volume = function(){ var l = this.lowerBound, u = this.upperBound; return (u.x - l.x) * (u.y - l.y) * (u.z - l.z); }; /** * Returns true if the given AABB is fully contained in this AABB. * @method contains * @param {AABB} aabb * @return {Boolean} */ AABB.prototype.contains = function(aabb){ var l1 = this.lowerBound, u1 = this.upperBound, l2 = aabb.lowerBound, u2 = aabb.upperBound; // l2 u2 // |---------| // |---------------| // l1 u1 return ( (l1.x <= l2.x && u1.x >= u2.x) && (l1.y <= l2.y && u1.y >= u2.y) && (l1.z <= l2.z && u1.z >= u2.z) ); }; /** * @method getCorners * @param {Vec3} a * @param {Vec3} b * @param {Vec3} c * @param {Vec3} d * @param {Vec3} e * @param {Vec3} f * @param {Vec3} g * @param {Vec3} h */ AABB.prototype.getCorners = function(a, b, c, d, e, f, g, h){ var l = this.lowerBound, u = this.upperBound; a.copy(l); b.set( u.x, l.y, l.z ); c.set( u.x, u.y, l.z ); d.set( l.x, u.y, u.z ); e.set( u.x, l.y, l.z ); f.set( l.x, u.y, l.z ); g.set( l.x, l.y, u.z ); h.copy(u); }; var transformIntoFrame_corners = [ new Vec3(), new Vec3(), new Vec3(), new Vec3(), new Vec3(), new Vec3(), new Vec3(), new Vec3() ]; /** * Get the representation of an AABB in another frame. * @method toLocalFrame * @param {Transform} frame * @param {AABB} target * @return {AABB} The "target" AABB object. */ AABB.prototype.toLocalFrame = function(frame, target){ var corners = transformIntoFrame_corners; var a = corners[0]; var b = corners[1]; var c = corners[2]; var d = corners[3]; var e = corners[4]; var f = corners[5]; var g = corners[6]; var h = corners[7]; // Get corners in current frame this.getCorners(a, b, c, d, e, f, g, h); // Transform them to new local frame for(var i=0; i !== 8; i++){ var corner = corners[i]; frame.pointToLocal(corner, corner); } return target.setFromPoints(corners); }; /** * Get the representation of an AABB in the global frame. * @method toWorldFrame * @param {Transform} frame * @param {AABB} target * @return {AABB} The "target" AABB object. */ AABB.prototype.toWorldFrame = function(frame, target){ var corners = transformIntoFrame_corners; var a = corners[0]; var b = corners[1]; var c = corners[2]; var d = corners[3]; var e = corners[4]; var f = corners[5]; var g = corners[6]; var h = corners[7]; // Get corners in current frame this.getCorners(a, b, c, d, e, f, g, h); // Transform them to new local frame for(var i=0; i !== 8; i++){ var corner = corners[i]; frame.pointToWorld(corner, corner); } return target.setFromPoints(corners); }; /** * Check if the AABB is hit by a ray. * @param {Ray} ray * @return {number} */ AABB.prototype.overlapsRay = function(ray){ var t = 0; // ray.direction is unit direction vector of ray var dirFracX = 1 / ray._direction.x; var dirFracY = 1 / ray._direction.y; var dirFracZ = 1 / ray._direction.z; // this.lowerBound is the corner of AABB with minimal coordinates - left bottom, rt is maximal corner var t1 = (this.lowerBound.x - ray.from.x) * dirFracX; var t2 = (this.upperBound.x - ray.from.x) * dirFracX; var t3 = (this.lowerBound.y - ray.from.y) * dirFracY; var t4 = (this.upperBound.y - ray.from.y) * dirFracY; var t5 = (this.lowerBound.z - ray.from.z) * dirFracZ; var t6 = (this.upperBound.z - ray.from.z) * dirFracZ; // var tmin = Math.max(Math.max(Math.min(t1, t2), Math.min(t3, t4))); // var tmax = Math.min(Math.min(Math.max(t1, t2), Math.max(t3, t4))); var tmin = Math.max(Math.max(Math.min(t1, t2), Math.min(t3, t4)), Math.min(t5, t6)); var tmax = Math.min(Math.min(Math.max(t1, t2), Math.max(t3, t4)), Math.max(t5, t6)); // if tmax < 0, ray (line) is intersecting AABB, but whole AABB is behing us if (tmax < 0){ //t = tmax; return false; } // if tmin > tmax, ray doesn't intersect AABB if (tmin > tmax){ //t = tmax; return false; } return true; }; },{"../math/Vec3":52,"../utils/Utils":75}],25:[function(require,module,exports){ module.exports = ArrayCollisionMatrix; /** * Collision "matrix". It's actually a triangular-shaped array of whether two bodies are touching this step, for reference next step * @class ArrayCollisionMatrix * @constructor */ function ArrayCollisionMatrix() { /** * The matrix storage * @property matrix * @type {Array} */ this.matrix = []; } /** * Get an element * @method get * @param {Number} i * @param {Number} j * @return {Number} */ ArrayCollisionMatrix.prototype.get = function(i, j) { i = i.index; j = j.index; if (j > i) { var temp = j; j = i; i = temp; } return this.matrix[(i*(i + 1)>>1) + j-1]; }; /** * Set an element * @method set * @param {Number} i * @param {Number} j * @param {Number} value */ ArrayCollisionMatrix.prototype.set = function(i, j, value) { i = i.index; j = j.index; if (j > i) { var temp = j; j = i; i = temp; } this.matrix[(i*(i + 1)>>1) + j-1] = value ? 1 : 0; }; /** * Sets all elements to zero * @method reset */ ArrayCollisionMatrix.prototype.reset = function() { for (var i=0, l=this.matrix.length; i!==l; i++) { this.matrix[i]=0; } }; /** * Sets the max number of objects * @method setNumObjects * @param {Number} n */ ArrayCollisionMatrix.prototype.setNumObjects = function(n) { this.matrix.length = n*(n-1)>>1; }; },{}],26:[function(require,module,exports){ var Body = require('../objects/Body'); var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var Shape = require('../shapes/Shape'); var Plane = require('../shapes/Plane'); module.exports = Broadphase; /** * Base class for broadphase implementations * @class Broadphase * @constructor * @author schteppe */ function Broadphase(){ /** * The world to search for collisions in. * @property world * @type {World} */ this.world = null; /** * If set to true, the broadphase uses bounding boxes for intersection test, else it uses bounding spheres. * @property useBoundingBoxes * @type {Boolean} */ this.useBoundingBoxes = false; /** * Set to true if the objects in the world moved. * @property {Boolean} dirty */ this.dirty = true; } /** * Get the collision pairs from the world * @method collisionPairs * @param {World} world The world to search in * @param {Array} p1 Empty array to be filled with body objects * @param {Array} p2 Empty array to be filled with body objects */ Broadphase.prototype.collisionPairs = function(world,p1,p2){ throw new Error("collisionPairs not implemented for this BroadPhase class!"); }; /** * Check if a body pair needs to be intersection tested at all. * @method needBroadphaseCollision * @param {Body} bodyA * @param {Body} bodyB * @return {bool} */ Broadphase.prototype.needBroadphaseCollision = function(bodyA,bodyB){ // Check collision filter masks if( (bodyA.collisionFilterGroup & bodyB.collisionFilterMask)===0 || (bodyB.collisionFilterGroup & bodyA.collisionFilterMask)===0){ return false; } // Check types if(((bodyA.type & Body.STATIC)!==0 || bodyA.sleepState === Body.SLEEPING) && ((bodyB.type & Body.STATIC)!==0 || bodyB.sleepState === Body.SLEEPING)) { // Both bodies are static or sleeping. Skip. return false; } return true; }; /** * Check if the bounding volumes of two bodies intersect. * @method intersectionTest * @param {Body} bodyA * @param {Body} bodyB * @param {array} pairs1 * @param {array} pairs2 */ Broadphase.prototype.intersectionTest = function(bodyA, bodyB, pairs1, pairs2){ if(this.useBoundingBoxes){ this.doBoundingBoxBroadphase(bodyA,bodyB,pairs1,pairs2); } else { this.doBoundingSphereBroadphase(bodyA,bodyB,pairs1,pairs2); } }; /** * Check if the bounding spheres of two bodies are intersecting. * @method doBoundingSphereBroadphase * @param {Body} bodyA * @param {Body} bodyB * @param {Array} pairs1 bodyA is appended to this array if intersection * @param {Array} pairs2 bodyB is appended to this array if intersection */ var Broadphase_collisionPairs_r = new Vec3(), // Temp objects Broadphase_collisionPairs_normal = new Vec3(), Broadphase_collisionPairs_quat = new Quaternion(), Broadphase_collisionPairs_relpos = new Vec3(); Broadphase.prototype.doBoundingSphereBroadphase = function(bodyA,bodyB,pairs1,pairs2){ var r = Broadphase_collisionPairs_r; bodyB.position.vsub(bodyA.position,r); var boundingRadiusSum2 = Math.pow(bodyA.boundingRadius + bodyB.boundingRadius, 2); var norm2 = r.norm2(); if(norm2 < boundingRadiusSum2){ pairs1.push(bodyA); pairs2.push(bodyB); } }; /** * Check if the bounding boxes of two bodies are intersecting. * @method doBoundingBoxBroadphase * @param {Body} bodyA * @param {Body} bodyB * @param {Array} pairs1 * @param {Array} pairs2 */ Broadphase.prototype.doBoundingBoxBroadphase = function(bodyA,bodyB,pairs1,pairs2){ if(bodyA.aabbNeedsUpdate){ bodyA.computeAABB(); } if(bodyB.aabbNeedsUpdate){ bodyB.computeAABB(); } // Check AABB / AABB if(bodyA.aabb.overlaps(bodyB.aabb)){ pairs1.push(bodyA); pairs2.push(bodyB); } }; /** * Removes duplicate pairs from the pair arrays. * @method makePairsUnique * @param {Array} pairs1 * @param {Array} pairs2 */ var Broadphase_makePairsUnique_temp = { keys:[] }, Broadphase_makePairsUnique_p1 = [], Broadphase_makePairsUnique_p2 = []; Broadphase.prototype.makePairsUnique = function(pairs1,pairs2){ var t = Broadphase_makePairsUnique_temp, p1 = Broadphase_makePairsUnique_p1, p2 = Broadphase_makePairsUnique_p2, N = pairs1.length; for(var i=0; i!==N; i++){ p1[i] = pairs1[i]; p2[i] = pairs2[i]; } pairs1.length = 0; pairs2.length = 0; for(var i=0; i!==N; i++){ var id1 = p1[i].id, id2 = p2[i].id; var key = id1 < id2 ? id1+","+id2 : id2+","+id1; t[key] = i; t.keys.push(key); } for(var i=0; i!==t.keys.length; i++){ var key = t.keys.pop(), pairIndex = t[key]; pairs1.push(p1[pairIndex]); pairs2.push(p2[pairIndex]); delete t[key]; } }; /** * To be implemented by subcasses * @method setWorld * @param {World} world */ Broadphase.prototype.setWorld = function(world){ }; /** * Check if the bounding spheres of two bodies overlap. * @method boundingSphereCheck * @param {Body} bodyA * @param {Body} bodyB * @return {boolean} */ var bsc_dist = new Vec3(); Broadphase.boundingSphereCheck = function(bodyA,bodyB){ var dist = bsc_dist; bodyA.position.vsub(bodyB.position,dist); return Math.pow(bodyA.shape.boundingSphereRadius + bodyB.shape.boundingSphereRadius,2) > dist.norm2(); }; /** * Returns all the bodies within the AABB. * @method aabbQuery * @param {World} world * @param {AABB} aabb * @param {array} result An array to store resulting bodies in. * @return {array} */ Broadphase.prototype.aabbQuery = function(world, aabb, result){ console.warn('.aabbQuery is not implemented in this Broadphase subclass.'); return []; }; },{"../math/Quaternion":50,"../math/Vec3":52,"../objects/Body":53,"../shapes/Plane":64,"../shapes/Shape":65}],27:[function(require,module,exports){ module.exports = GridBroadphase; var Broadphase = require('./Broadphase'); var Vec3 = require('../math/Vec3'); var Shape = require('../shapes/Shape'); /** * Axis aligned uniform grid broadphase. * @class GridBroadphase * @constructor * @extends Broadphase * @todo Needs support for more than just planes and spheres. * @param {Vec3} aabbMin * @param {Vec3} aabbMax * @param {Number} nx Number of boxes along x * @param {Number} ny Number of boxes along y * @param {Number} nz Number of boxes along z */ function GridBroadphase(aabbMin,aabbMax,nx,ny,nz){ Broadphase.apply(this); this.nx = nx || 10; this.ny = ny || 10; this.nz = nz || 10; this.aabbMin = aabbMin || new Vec3(100,100,100); this.aabbMax = aabbMax || new Vec3(-100,-100,-100); var nbins = this.nx * this.ny * this.nz; if (nbins <= 0) { throw "GridBroadphase: Each dimension's n must be >0"; } this.bins = []; this.binLengths = []; //Rather than continually resizing arrays (thrashing the memory), just record length and allow them to grow this.bins.length = nbins; this.binLengths.length = nbins; for (var i=0;i= nx) { xoff0 = nx - 1; } if (yoff0 < 0) { yoff0 = 0; } else if (yoff0 >= ny) { yoff0 = ny - 1; } if (zoff0 < 0) { zoff0 = 0; } else if (zoff0 >= nz) { zoff0 = nz - 1; } if (xoff1 < 0) { xoff1 = 0; } else if (xoff1 >= nx) { xoff1 = nx - 1; } if (yoff1 < 0) { yoff1 = 0; } else if (yoff1 >= ny) { yoff1 = ny - 1; } if (zoff1 < 0) { zoff1 = 0; } else if (zoff1 >= nz) { zoff1 = nz - 1; } xoff0 *= xstep; yoff0 *= ystep; zoff0 *= zstep; xoff1 *= xstep; yoff1 *= ystep; zoff1 *= zstep; for (var xoff = xoff0; xoff <= xoff1; xoff += xstep) { for (var yoff = yoff0; yoff <= yoff1; yoff += ystep) { for (var zoff = zoff0; zoff <= zoff1; zoff += zstep) { var idx = xoff+yoff+zoff; bins[idx][binLengths[idx]++] = bi; } } } } // Put all bodies into the bins for(var i=0; i!==N; i++){ var bi = bodies[i]; var si = bi.shape; switch(si.type){ case SPHERE: // Put in bin // check if overlap with other bins var x = bi.position.x, y = bi.position.y, z = bi.position.z; var r = si.radius; addBoxToBins(x-r, y-r, z-r, x+r, y+r, z+r, bi); break; case PLANE: if(si.worldNormalNeedsUpdate){ si.computeWorldNormal(bi.quaternion); } var planeNormal = si.worldNormal; //Relative position from origin of plane object to the first bin //Incremented as we iterate through the bins var xreset = xmin + binsizeX*0.5 - bi.position.x, yreset = ymin + binsizeY*0.5 - bi.position.y, zreset = zmin + binsizeZ*0.5 - bi.position.z; var d = GridBroadphase_collisionPairs_d; d.set(xreset, yreset, zreset); for (var xi = 0, xoff = 0; xi !== nx; xi++, xoff += xstep, d.y = yreset, d.x += binsizeX) { for (var yi = 0, yoff = 0; yi !== ny; yi++, yoff += ystep, d.z = zreset, d.y += binsizeY) { for (var zi = 0, zoff = 0; zi !== nz; zi++, zoff += zstep, d.z += binsizeZ) { if (d.dot(planeNormal) < binRadius) { var idx = xoff + yoff + zoff; bins[idx][binLengths[idx]++] = bi; } } } } break; default: if (bi.aabbNeedsUpdate) { bi.computeAABB(); } addBoxToBins( bi.aabb.lowerBound.x, bi.aabb.lowerBound.y, bi.aabb.lowerBound.z, bi.aabb.upperBound.x, bi.aabb.upperBound.y, bi.aabb.upperBound.z, bi); break; } } // Check each bin for(var i=0; i!==Nbins; i++){ var binLength = binLengths[i]; //Skip bins with no potential collisions if (binLength > 1) { var bin = bins[i]; // Do N^2 broadphase inside for(var xi=0; xi!==binLength; xi++){ var bi = bin[xi]; for(var yi=0; yi!==xi; yi++){ var bj = bin[yi]; if(this.needBroadphaseCollision(bi,bj)){ this.intersectionTest(bi,bj,pairs1,pairs2); } } } } } // for (var zi = 0, zoff=0; zi < nz; zi++, zoff+= zstep) { // console.log("layer "+zi); // for (var yi = 0, yoff=0; yi < ny; yi++, yoff += ystep) { // var row = ''; // for (var xi = 0, xoff=0; xi < nx; xi++, xoff += xstep) { // var idx = xoff + yoff + zoff; // row += ' ' + binLengths[idx]; // } // console.log(row); // } // } this.makePairsUnique(pairs1,pairs2); }; },{"../math/Vec3":52,"../shapes/Shape":65,"./Broadphase":26}],28:[function(require,module,exports){ module.exports = NaiveBroadphase; var Broadphase = require('./Broadphase'); var AABB = require('./AABB'); /** * Naive broadphase implementation, used in lack of better ones. * @class NaiveBroadphase * @constructor * @description The naive broadphase looks at all possible pairs without restriction, therefore it has complexity N^2 (which is bad) * @extends Broadphase */ function NaiveBroadphase(){ Broadphase.apply(this); } NaiveBroadphase.prototype = new Broadphase(); NaiveBroadphase.prototype.constructor = NaiveBroadphase; /** * Get all the collision pairs in the physics world * @method collisionPairs * @param {World} world * @param {Array} pairs1 * @param {Array} pairs2 */ NaiveBroadphase.prototype.collisionPairs = function(world,pairs1,pairs2){ var bodies = world.bodies, n = bodies.length, i,j,bi,bj; // Naive N^2 ftw! for(i=0; i!==n; i++){ for(j=0; j!==i; j++){ bi = bodies[i]; bj = bodies[j]; if(!this.needBroadphaseCollision(bi,bj)){ continue; } this.intersectionTest(bi,bj,pairs1,pairs2); } } }; var tmpAABB = new AABB(); /** * Returns all the bodies within an AABB. * @method aabbQuery * @param {World} world * @param {AABB} aabb * @param {array} result An array to store resulting bodies in. * @return {array} */ NaiveBroadphase.prototype.aabbQuery = function(world, aabb, result){ result = result || []; for(var i = 0; i < world.bodies.length; i++){ var b = world.bodies[i]; if(b.aabbNeedsUpdate){ b.computeAABB(); } // Ugly hack until Body gets aabb if(b.aabb.overlaps(aabb)){ result.push(b); } } return result; }; },{"./AABB":24,"./Broadphase":26}],29:[function(require,module,exports){ module.exports = ObjectCollisionMatrix; /** * Records what objects are colliding with each other * @class ObjectCollisionMatrix * @constructor */ function ObjectCollisionMatrix() { /** * The matrix storage * @property matrix * @type {Object} */ this.matrix = {}; } /** * @method get * @param {Number} i * @param {Number} j * @return {Number} */ ObjectCollisionMatrix.prototype.get = function(i, j) { i = i.id; j = j.id; if (j > i) { var temp = j; j = i; i = temp; } return i+'-'+j in this.matrix; }; /** * @method set * @param {Number} i * @param {Number} j * @param {Number} value */ ObjectCollisionMatrix.prototype.set = function(i, j, value) { i = i.id; j = j.id; if (j > i) { var temp = j; j = i; i = temp; } if (value) { this.matrix[i+'-'+j] = true; } else { delete this.matrix[i+'-'+j]; } }; /** * Empty the matrix * @method reset */ ObjectCollisionMatrix.prototype.reset = function() { this.matrix = {}; }; /** * Set max number of objects * @method setNumObjects * @param {Number} n */ ObjectCollisionMatrix.prototype.setNumObjects = function(n) { }; },{}],30:[function(require,module,exports){ module.exports = OverlapKeeper; /** * @class OverlapKeeper * @constructor */ function OverlapKeeper() { this.current = []; this.previous = []; } OverlapKeeper.prototype.getKey = function(i, j) { if (j < i) { var temp = j; j = i; i = temp; } return (i << 16) | j; }; /** * @method set * @param {Number} i * @param {Number} j */ OverlapKeeper.prototype.set = function(i, j) { // Insertion sort. This way the diff will have linear complexity. var key = this.getKey(i, j); var current = this.current; var index = 0; while(key > current[index]){ index++; } if(key === current[index]){ return; // Pair was already added } for(var j=current.length-1; j>=index; j--){ current[j + 1] = current[j]; } current[index] = key; }; /** * @method tick */ OverlapKeeper.prototype.tick = function() { var tmp = this.current; this.current = this.previous; this.previous = tmp; this.current.length = 0; }; function unpackAndPush(array, key){ array.push((key & 0xFFFF0000) >> 16, key & 0x0000FFFF); } /** * @method getDiff * @param {array} additions * @param {array} removals */ OverlapKeeper.prototype.getDiff = function(additions, removals) { var a = this.current; var b = this.previous; var al = a.length; var bl = b.length; var j=0; for (var i = 0; i < al; i++) { var found = false; var keyA = a[i]; while(keyA > b[j]){ j++; } found = keyA === b[j]; if(!found){ unpackAndPush(additions, keyA); } } j = 0; for (var i = 0; i < bl; i++) { var found = false; var keyB = b[i]; while(keyB > a[j]){ j++; } found = a[j] === keyB; if(!found){ unpackAndPush(removals, keyB); } } }; },{}],31:[function(require,module,exports){ module.exports = Ray; var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var Transform = require('../math/Transform'); var ConvexPolyhedron = require('../shapes/ConvexPolyhedron'); var Box = require('../shapes/Box'); var RaycastResult = require('../collision/RaycastResult'); var Shape = require('../shapes/Shape'); var AABB = require('../collision/AABB'); /** * A line in 3D space that intersects bodies and return points. * @class Ray * @constructor * @param {Vec3} from * @param {Vec3} to */ function Ray(from, to){ /** * @property {Vec3} from */ this.from = from ? from.clone() : new Vec3(); /** * @property {Vec3} to */ this.to = to ? to.clone() : new Vec3(); /** * @private * @property {Vec3} _direction */ this._direction = new Vec3(); /** * The precision of the ray. Used when checking parallelity etc. * @property {Number} precision */ this.precision = 0.0001; /** * Set to true if you want the Ray to take .collisionResponse flags into account on bodies and shapes. * @property {Boolean} checkCollisionResponse */ this.checkCollisionResponse = true; /** * If set to true, the ray skips any hits with normal.dot(rayDirection) < 0. * @property {Boolean} skipBackfaces */ this.skipBackfaces = false; /** * @property {number} collisionFilterMask * @default -1 */ this.collisionFilterMask = -1; /** * @property {number} collisionFilterGroup * @default -1 */ this.collisionFilterGroup = -1; /** * The intersection mode. Should be Ray.ANY, Ray.ALL or Ray.CLOSEST. * @property {number} mode */ this.mode = Ray.ANY; /** * Current result object. * @property {RaycastResult} result */ this.result = new RaycastResult(); /** * Will be set to true during intersectWorld() if the ray hit anything. * @property {Boolean} hasHit */ this.hasHit = false; /** * Current, user-provided result callback. Will be used if mode is Ray.ALL. * @property {Function} callback */ this.callback = function(result){}; } Ray.prototype.constructor = Ray; Ray.CLOSEST = 1; Ray.ANY = 2; Ray.ALL = 4; var tmpAABB = new AABB(); var tmpArray = []; /** * Do itersection against all bodies in the given World. * @method intersectWorld * @param {World} world * @param {object} options * @return {Boolean} True if the ray hit anything, otherwise false. */ Ray.prototype.intersectWorld = function (world, options) { this.mode = options.mode || Ray.ANY; this.result = options.result || new RaycastResult(); this.skipBackfaces = !!options.skipBackfaces; this.collisionFilterMask = typeof(options.collisionFilterMask) !== 'undefined' ? options.collisionFilterMask : -1; this.collisionFilterGroup = typeof(options.collisionFilterGroup) !== 'undefined' ? options.collisionFilterGroup : -1; if(options.from){ this.from.copy(options.from); } if(options.to){ this.to.copy(options.to); } this.callback = options.callback || function(){}; this.hasHit = false; this.result.reset(); this._updateDirection(); this.getAABB(tmpAABB); tmpArray.length = 0; world.broadphase.aabbQuery(world, tmpAABB, tmpArray); this.intersectBodies(tmpArray); return this.hasHit; }; var v1 = new Vec3(), v2 = new Vec3(); /* * As per "Barycentric Technique" as named here http://www.blackpawn.com/texts/pointinpoly/default.html But without the division */ Ray.pointInTriangle = pointInTriangle; function pointInTriangle(p, a, b, c) { c.vsub(a,v0); b.vsub(a,v1); p.vsub(a,v2); var dot00 = v0.dot( v0 ); var dot01 = v0.dot( v1 ); var dot02 = v0.dot( v2 ); var dot11 = v1.dot( v1 ); var dot12 = v1.dot( v2 ); var u,v; return ( (u = dot11 * dot02 - dot01 * dot12) >= 0 ) && ( (v = dot00 * dot12 - dot01 * dot02) >= 0 ) && ( u + v < ( dot00 * dot11 - dot01 * dot01 ) ); } /** * Shoot a ray at a body, get back information about the hit. * @method intersectBody * @private * @param {Body} body * @param {RaycastResult} [result] Deprecated - set the result property of the Ray instead. */ var intersectBody_xi = new Vec3(); var intersectBody_qi = new Quaternion(); Ray.prototype.intersectBody = function (body, result) { if(result){ this.result = result; this._updateDirection(); } var checkCollisionResponse = this.checkCollisionResponse; if(checkCollisionResponse && !body.collisionResponse){ return; } if((this.collisionFilterGroup & body.collisionFilterMask)===0 || (body.collisionFilterGroup & this.collisionFilterMask)===0){ return; } var xi = intersectBody_xi; var qi = intersectBody_qi; for (var i = 0, N = body.shapes.length; i < N; i++) { var shape = body.shapes[i]; if(checkCollisionResponse && !shape.collisionResponse){ continue; // Skip } body.quaternion.mult(body.shapeOrientations[i], qi); body.quaternion.vmult(body.shapeOffsets[i], xi); xi.vadd(body.position, xi); this.intersectShape( shape, qi, xi, body ); if(this.result._shouldStop){ break; } } }; /** * @method intersectBodies * @param {Array} bodies An array of Body objects. * @param {RaycastResult} [result] Deprecated */ Ray.prototype.intersectBodies = function (bodies, result) { if(result){ this.result = result; this._updateDirection(); } for ( var i = 0, l = bodies.length; !this.result._shouldStop && i < l; i ++ ) { this.intersectBody(bodies[i]); } }; /** * Updates the _direction vector. * @private * @method _updateDirection */ Ray.prototype._updateDirection = function(){ this.to.vsub(this.from, this._direction); this._direction.normalize(); }; /** * @method intersectShape * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body */ Ray.prototype.intersectShape = function(shape, quat, position, body){ var from = this.from; // Checking boundingSphere var distance = distanceFromIntersection(from, this._direction, position); if ( distance > shape.boundingSphereRadius ) { return; } var intersectMethod = this[shape.type]; if(intersectMethod){ intersectMethod.call(this, shape, quat, position, body, shape); } }; var vector = new Vec3(); var normal = new Vec3(); var intersectPoint = new Vec3(); var a = new Vec3(); var b = new Vec3(); var c = new Vec3(); var d = new Vec3(); var tmpRaycastResult = new RaycastResult(); /** * @method intersectBox * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body */ Ray.prototype.intersectBox = function(shape, quat, position, body, reportedShape){ return this.intersectConvex(shape.convexPolyhedronRepresentation, quat, position, body, reportedShape); }; Ray.prototype[Shape.types.BOX] = Ray.prototype.intersectBox; /** * @method intersectPlane * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body */ Ray.prototype.intersectPlane = function(shape, quat, position, body, reportedShape){ var from = this.from; var to = this.to; var direction = this._direction; // Get plane normal var worldNormal = new Vec3(0, 0, 1); quat.vmult(worldNormal, worldNormal); var len = new Vec3(); from.vsub(position, len); var planeToFrom = len.dot(worldNormal); to.vsub(position, len); var planeToTo = len.dot(worldNormal); if(planeToFrom * planeToTo > 0){ // "from" and "to" are on the same side of the plane... bail out return; } if(from.distanceTo(to) < planeToFrom){ return; } var n_dot_dir = worldNormal.dot(direction); if (Math.abs(n_dot_dir) < this.precision) { // No intersection return; } var planePointToFrom = new Vec3(); var dir_scaled_with_t = new Vec3(); var hitPointWorld = new Vec3(); from.vsub(position, planePointToFrom); var t = -worldNormal.dot(planePointToFrom) / n_dot_dir; direction.scale(t, dir_scaled_with_t); from.vadd(dir_scaled_with_t, hitPointWorld); this.reportIntersection(worldNormal, hitPointWorld, reportedShape, body, -1); }; Ray.prototype[Shape.types.PLANE] = Ray.prototype.intersectPlane; /** * Get the world AABB of the ray. * @method getAABB * @param {AABB} aabb */ Ray.prototype.getAABB = function(result){ var to = this.to; var from = this.from; result.lowerBound.x = Math.min(to.x, from.x); result.lowerBound.y = Math.min(to.y, from.y); result.lowerBound.z = Math.min(to.z, from.z); result.upperBound.x = Math.max(to.x, from.x); result.upperBound.y = Math.max(to.y, from.y); result.upperBound.z = Math.max(to.z, from.z); }; var intersectConvexOptions = { faceList: [0] }; var worldPillarOffset = new Vec3(); var intersectHeightfield_localRay = new Ray(); var intersectHeightfield_index = []; var intersectHeightfield_minMax = []; /** * @method intersectHeightfield * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body */ Ray.prototype.intersectHeightfield = function(shape, quat, position, body, reportedShape){ var data = shape.data, w = shape.elementSize; // Convert the ray to local heightfield coordinates var localRay = intersectHeightfield_localRay; //new Ray(this.from, this.to); localRay.from.copy(this.from); localRay.to.copy(this.to); Transform.pointToLocalFrame(position, quat, localRay.from, localRay.from); Transform.pointToLocalFrame(position, quat, localRay.to, localRay.to); localRay._updateDirection(); // Get the index of the data points to test against var index = intersectHeightfield_index; var iMinX, iMinY, iMaxX, iMaxY; // Set to max iMinX = iMinY = 0; iMaxX = iMaxY = shape.data.length - 1; var aabb = new AABB(); localRay.getAABB(aabb); shape.getIndexOfPosition(aabb.lowerBound.x, aabb.lowerBound.y, index, true); iMinX = Math.max(iMinX, index[0]); iMinY = Math.max(iMinY, index[1]); shape.getIndexOfPosition(aabb.upperBound.x, aabb.upperBound.y, index, true); iMaxX = Math.min(iMaxX, index[0] + 1); iMaxY = Math.min(iMaxY, index[1] + 1); for(var i = iMinX; i < iMaxX; i++){ for(var j = iMinY; j < iMaxY; j++){ if(this.result._shouldStop){ return; } shape.getAabbAtIndex(i, j, aabb); if(!aabb.overlapsRay(localRay)){ continue; } // Lower triangle shape.getConvexTrianglePillar(i, j, false); Transform.pointToWorldFrame(position, quat, shape.pillarOffset, worldPillarOffset); this.intersectConvex(shape.pillarConvex, quat, worldPillarOffset, body, reportedShape, intersectConvexOptions); if(this.result._shouldStop){ return; } // Upper triangle shape.getConvexTrianglePillar(i, j, true); Transform.pointToWorldFrame(position, quat, shape.pillarOffset, worldPillarOffset); this.intersectConvex(shape.pillarConvex, quat, worldPillarOffset, body, reportedShape, intersectConvexOptions); } } }; Ray.prototype[Shape.types.HEIGHTFIELD] = Ray.prototype.intersectHeightfield; var Ray_intersectSphere_intersectionPoint = new Vec3(); var Ray_intersectSphere_normal = new Vec3(); /** * @method intersectSphere * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body */ Ray.prototype.intersectSphere = function(shape, quat, position, body, reportedShape){ var from = this.from, to = this.to, r = shape.radius; var a = Math.pow(to.x - from.x, 2) + Math.pow(to.y - from.y, 2) + Math.pow(to.z - from.z, 2); var b = 2 * ((to.x - from.x) * (from.x - position.x) + (to.y - from.y) * (from.y - position.y) + (to.z - from.z) * (from.z - position.z)); var c = Math.pow(from.x - position.x, 2) + Math.pow(from.y - position.y, 2) + Math.pow(from.z - position.z, 2) - Math.pow(r, 2); var delta = Math.pow(b, 2) - 4 * a * c; var intersectionPoint = Ray_intersectSphere_intersectionPoint; var normal = Ray_intersectSphere_normal; if(delta < 0){ // No intersection return; } else if(delta === 0){ // single intersection point from.lerp(to, delta, intersectionPoint); intersectionPoint.vsub(position, normal); normal.normalize(); this.reportIntersection(normal, intersectionPoint, reportedShape, body, -1); } else { var d1 = (- b - Math.sqrt(delta)) / (2 * a); var d2 = (- b + Math.sqrt(delta)) / (2 * a); if(d1 >= 0 && d1 <= 1){ from.lerp(to, d1, intersectionPoint); intersectionPoint.vsub(position, normal); normal.normalize(); this.reportIntersection(normal, intersectionPoint, reportedShape, body, -1); } if(this.result._shouldStop){ return; } if(d2 >= 0 && d2 <= 1){ from.lerp(to, d2, intersectionPoint); intersectionPoint.vsub(position, normal); normal.normalize(); this.reportIntersection(normal, intersectionPoint, reportedShape, body, -1); } } }; Ray.prototype[Shape.types.SPHERE] = Ray.prototype.intersectSphere; var intersectConvex_normal = new Vec3(); var intersectConvex_minDistNormal = new Vec3(); var intersectConvex_minDistIntersect = new Vec3(); var intersectConvex_vector = new Vec3(); /** * @method intersectConvex * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body * @param {object} [options] * @param {array} [options.faceList] */ Ray.prototype.intersectConvex = function intersectConvex( shape, quat, position, body, reportedShape, options ){ var minDistNormal = intersectConvex_minDistNormal; var normal = intersectConvex_normal; var vector = intersectConvex_vector; var minDistIntersect = intersectConvex_minDistIntersect; var faceList = (options && options.faceList) || null; // Checking faces var faces = shape.faces, vertices = shape.vertices, normals = shape.faceNormals; var direction = this._direction; var from = this.from; var to = this.to; var fromToDistance = from.distanceTo(to); var minDist = -1; var Nfaces = faceList ? faceList.length : faces.length; var result = this.result; for (var j = 0; !result._shouldStop && j < Nfaces; j++) { var fi = faceList ? faceList[j] : j; var face = faces[fi]; var faceNormal = normals[fi]; var q = quat; var x = position; // determine if ray intersects the plane of the face // note: this works regardless of the direction of the face normal // Get plane point in world coordinates... vector.copy(vertices[face[0]]); q.vmult(vector,vector); vector.vadd(x,vector); // ...but make it relative to the ray from. We'll fix this later. vector.vsub(from,vector); // Get plane normal q.vmult(faceNormal,normal); // If this dot product is negative, we have something interesting var dot = direction.dot(normal); // Bail out if ray and plane are parallel if ( Math.abs( dot ) < this.precision ){ continue; } // calc distance to plane var scalar = normal.dot(vector) / dot; // if negative distance, then plane is behind ray if (scalar < 0){ continue; } // if (dot < 0) { // Intersection point is from + direction * scalar direction.mult(scalar,intersectPoint); intersectPoint.vadd(from,intersectPoint); // a is the point we compare points b and c with. a.copy(vertices[face[0]]); q.vmult(a,a); x.vadd(a,a); for(var i = 1; !result._shouldStop && i < face.length - 1; i++){ // Transform 3 vertices to world coords b.copy(vertices[face[i]]); c.copy(vertices[face[i+1]]); q.vmult(b,b); q.vmult(c,c); x.vadd(b,b); x.vadd(c,c); var distance = intersectPoint.distanceTo(from); if(!(pointInTriangle(intersectPoint, a, b, c) || pointInTriangle(intersectPoint, b, a, c)) || distance > fromToDistance){ continue; } this.reportIntersection(normal, intersectPoint, reportedShape, body, fi); } // } } }; Ray.prototype[Shape.types.CONVEXPOLYHEDRON] = Ray.prototype.intersectConvex; var intersectTrimesh_normal = new Vec3(); var intersectTrimesh_localDirection = new Vec3(); var intersectTrimesh_localFrom = new Vec3(); var intersectTrimesh_localTo = new Vec3(); var intersectTrimesh_worldNormal = new Vec3(); var intersectTrimesh_worldIntersectPoint = new Vec3(); var intersectTrimesh_localAABB = new AABB(); var intersectTrimesh_triangles = []; var intersectTrimesh_treeTransform = new Transform(); /** * @method intersectTrimesh * @private * @param {Shape} shape * @param {Quaternion} quat * @param {Vec3} position * @param {Body} body * @param {object} [options] * @todo Optimize by transforming the world to local space first. * @todo Use Octree lookup */ Ray.prototype.intersectTrimesh = function intersectTrimesh( mesh, quat, position, body, reportedShape, options ){ var normal = intersectTrimesh_normal; var triangles = intersectTrimesh_triangles; var treeTransform = intersectTrimesh_treeTransform; var minDistNormal = intersectConvex_minDistNormal; var vector = intersectConvex_vector; var minDistIntersect = intersectConvex_minDistIntersect; var localAABB = intersectTrimesh_localAABB; var localDirection = intersectTrimesh_localDirection; var localFrom = intersectTrimesh_localFrom; var localTo = intersectTrimesh_localTo; var worldIntersectPoint = intersectTrimesh_worldIntersectPoint; var worldNormal = intersectTrimesh_worldNormal; var faceList = (options && options.faceList) || null; // Checking faces var indices = mesh.indices, vertices = mesh.vertices, normals = mesh.faceNormals; var from = this.from; var to = this.to; var direction = this._direction; var minDist = -1; treeTransform.position.copy(position); treeTransform.quaternion.copy(quat); // Transform ray to local space! Transform.vectorToLocalFrame(position, quat, direction, localDirection); Transform.pointToLocalFrame(position, quat, from, localFrom); Transform.pointToLocalFrame(position, quat, to, localTo); localTo.x *= mesh.scale.x; localTo.y *= mesh.scale.y; localTo.z *= mesh.scale.z; localFrom.x *= mesh.scale.x; localFrom.y *= mesh.scale.y; localFrom.z *= mesh.scale.z; localTo.vsub(localFrom, localDirection); localDirection.normalize(); var fromToDistanceSquared = localFrom.distanceSquared(localTo); mesh.tree.rayQuery(this, treeTransform, triangles); for (var i = 0, N = triangles.length; !this.result._shouldStop && i !== N; i++) { var trianglesIndex = triangles[i]; mesh.getNormal(trianglesIndex, normal); // determine if ray intersects the plane of the face // note: this works regardless of the direction of the face normal // Get plane point in world coordinates... mesh.getVertex(indices[trianglesIndex * 3], a); // ...but make it relative to the ray from. We'll fix this later. a.vsub(localFrom,vector); // If this dot product is negative, we have something interesting var dot = localDirection.dot(normal); // Bail out if ray and plane are parallel // if (Math.abs( dot ) < this.precision){ // continue; // } // calc distance to plane var scalar = normal.dot(vector) / dot; // if negative distance, then plane is behind ray if (scalar < 0){ continue; } // Intersection point is from + direction * scalar localDirection.scale(scalar,intersectPoint); intersectPoint.vadd(localFrom,intersectPoint); // Get triangle vertices mesh.getVertex(indices[trianglesIndex * 3 + 1], b); mesh.getVertex(indices[trianglesIndex * 3 + 2], c); var squaredDistance = intersectPoint.distanceSquared(localFrom); if(!(pointInTriangle(intersectPoint, b, a, c) || pointInTriangle(intersectPoint, a, b, c)) || squaredDistance > fromToDistanceSquared){ continue; } // transform intersectpoint and normal to world Transform.vectorToWorldFrame(quat, normal, worldNormal); Transform.pointToWorldFrame(position, quat, intersectPoint, worldIntersectPoint); this.reportIntersection(worldNormal, worldIntersectPoint, reportedShape, body, trianglesIndex); } triangles.length = 0; }; Ray.prototype[Shape.types.TRIMESH] = Ray.prototype.intersectTrimesh; /** * @method reportIntersection * @private * @param {Vec3} normal * @param {Vec3} hitPointWorld * @param {Shape} shape * @param {Body} body * @return {boolean} True if the intersections should continue */ Ray.prototype.reportIntersection = function(normal, hitPointWorld, shape, body, hitFaceIndex){ var from = this.from; var to = this.to; var distance = from.distanceTo(hitPointWorld); var result = this.result; // Skip back faces? if(this.skipBackfaces && normal.dot(this._direction) > 0){ return; } result.hitFaceIndex = typeof(hitFaceIndex) !== 'undefined' ? hitFaceIndex : -1; switch(this.mode){ case Ray.ALL: this.hasHit = true; result.set( from, to, normal, hitPointWorld, shape, body, distance ); result.hasHit = true; this.callback(result); break; case Ray.CLOSEST: // Store if closer than current closest if(distance < result.distance || !result.hasHit){ this.hasHit = true; result.hasHit = true; result.set( from, to, normal, hitPointWorld, shape, body, distance ); } break; case Ray.ANY: // Report and stop. this.hasHit = true; result.hasHit = true; result.set( from, to, normal, hitPointWorld, shape, body, distance ); result._shouldStop = true; break; } }; var v0 = new Vec3(), intersect = new Vec3(); function distanceFromIntersection(from, direction, position) { // v0 is vector from from to position position.vsub(from,v0); var dot = v0.dot(direction); // intersect = direction*dot + from direction.mult(dot,intersect); intersect.vadd(from,intersect); var distance = position.distanceTo(intersect); return distance; } },{"../collision/AABB":24,"../collision/RaycastResult":32,"../math/Quaternion":50,"../math/Transform":51,"../math/Vec3":52,"../shapes/Box":59,"../shapes/ConvexPolyhedron":60,"../shapes/Shape":65}],32:[function(require,module,exports){ var Vec3 = require('../math/Vec3'); module.exports = RaycastResult; /** * Storage for Ray casting data. * @class RaycastResult * @constructor */ function RaycastResult(){ /** * @property {Vec3} rayFromWorld */ this.rayFromWorld = new Vec3(); /** * @property {Vec3} rayToWorld */ this.rayToWorld = new Vec3(); /** * @property {Vec3} hitNormalWorld */ this.hitNormalWorld = new Vec3(); /** * @property {Vec3} hitPointWorld */ this.hitPointWorld = new Vec3(); /** * @property {boolean} hasHit */ this.hasHit = false; /** * The hit shape, or null. * @property {Shape} shape */ this.shape = null; /** * The hit body, or null. * @property {Body} body */ this.body = null; /** * The index of the hit triangle, if the hit shape was a trimesh. * @property {number} hitFaceIndex * @default -1 */ this.hitFaceIndex = -1; /** * Distance to the hit. Will be set to -1 if there was no hit. * @property {number} distance * @default -1 */ this.distance = -1; /** * If the ray should stop traversing the bodies. * @private * @property {Boolean} _shouldStop * @default false */ this._shouldStop = false; } /** * Reset all result data. * @method reset */ RaycastResult.prototype.reset = function () { this.rayFromWorld.setZero(); this.rayToWorld.setZero(); this.hitNormalWorld.setZero(); this.hitPointWorld.setZero(); this.hasHit = false; this.shape = null; this.body = null; this.hitFaceIndex = -1; this.distance = -1; this._shouldStop = false; }; /** * @method abort */ RaycastResult.prototype.abort = function(){ this._shouldStop = true; }; /** * @method set * @param {Vec3} rayFromWorld * @param {Vec3} rayToWorld * @param {Vec3} hitNormalWorld * @param {Vec3} hitPointWorld * @param {Shape} shape * @param {Body} body * @param {number} distance */ RaycastResult.prototype.set = function( rayFromWorld, rayToWorld, hitNormalWorld, hitPointWorld, shape, body, distance ){ this.rayFromWorld.copy(rayFromWorld); this.rayToWorld.copy(rayToWorld); this.hitNormalWorld.copy(hitNormalWorld); this.hitPointWorld.copy(hitPointWorld); this.shape = shape; this.body = body; this.distance = distance; }; },{"../math/Vec3":52}],33:[function(require,module,exports){ var Shape = require('../shapes/Shape'); var Broadphase = require('../collision/Broadphase'); module.exports = SAPBroadphase; /** * Sweep and prune broadphase along one axis. * * @class SAPBroadphase * @constructor * @param {World} [world] * @extends Broadphase */ function SAPBroadphase(world){ Broadphase.apply(this); /** * List of bodies currently in the broadphase. * @property axisList * @type {Array} */ this.axisList = []; /** * The world to search in. * @property world * @type {World} */ this.world = null; /** * Axis to sort the bodies along. Set to 0 for x axis, and 1 for y axis. For best performance, choose an axis that the bodies are spread out more on. * @property axisIndex * @type {Number} */ this.axisIndex = 0; var axisList = this.axisList; this._addBodyHandler = function(e){ axisList.push(e.body); }; this._removeBodyHandler = function(e){ var idx = axisList.indexOf(e.body); if(idx !== -1){ axisList.splice(idx,1); } }; if(world){ this.setWorld(world); } } SAPBroadphase.prototype = new Broadphase(); /** * Change the world * @method setWorld * @param {World} world */ SAPBroadphase.prototype.setWorld = function(world){ // Clear the old axis array this.axisList.length = 0; // Add all bodies from the new world for(var i=0; i=0;j--) { if(a[j].aabb.lowerBound.x <= v.aabb.lowerBound.x){ break; } a[j+1] = a[j]; } a[j+1] = v; } return a; }; /** * @static * @method insertionSortY * @param {Array} a * @return {Array} */ SAPBroadphase.insertionSortY = function(a) { for(var i=1,l=a.length;i=0;j--) { if(a[j].aabb.lowerBound.y <= v.aabb.lowerBound.y){ break; } a[j+1] = a[j]; } a[j+1] = v; } return a; }; /** * @static * @method insertionSortZ * @param {Array} a * @return {Array} */ SAPBroadphase.insertionSortZ = function(a) { for(var i=1,l=a.length;i=0;j--) { if(a[j].aabb.lowerBound.z <= v.aabb.lowerBound.z){ break; } a[j+1] = a[j]; } a[j+1] = v; } return a; }; /** * Collect all collision pairs * @method collisionPairs * @param {World} world * @param {Array} p1 * @param {Array} p2 */ SAPBroadphase.prototype.collisionPairs = function(world,p1,p2){ var bodies = this.axisList, N = bodies.length, axisIndex = this.axisIndex, i, j; if(this.dirty){ this.sortList(); this.dirty = false; } // Look through the list for(i=0; i !== N; i++){ var bi = bodies[i]; for(j=i+1; j < N; j++){ var bj = bodies[j]; if(!this.needBroadphaseCollision(bi,bj)){ continue; } if(!SAPBroadphase.checkBounds(bi,bj,axisIndex)){ break; } this.intersectionTest(bi,bj,p1,p2); } } }; SAPBroadphase.prototype.sortList = function(){ var axisList = this.axisList; var axisIndex = this.axisIndex; var N = axisList.length; // Update AABBs for(var i = 0; i!==N; i++){ var bi = axisList[i]; if(bi.aabbNeedsUpdate){ bi.computeAABB(); } } // Sort the list if(axisIndex === 0){ SAPBroadphase.insertionSortX(axisList); } else if(axisIndex === 1){ SAPBroadphase.insertionSortY(axisList); } else if(axisIndex === 2){ SAPBroadphase.insertionSortZ(axisList); } }; /** * Check if the bounds of two bodies overlap, along the given SAP axis. * @static * @method checkBounds * @param {Body} bi * @param {Body} bj * @param {Number} axisIndex * @return {Boolean} */ SAPBroadphase.checkBounds = function(bi, bj, axisIndex){ var biPos; var bjPos; if(axisIndex === 0){ biPos = bi.position.x; bjPos = bj.position.x; } else if(axisIndex === 1){ biPos = bi.position.y; bjPos = bj.position.y; } else if(axisIndex === 2){ biPos = bi.position.z; bjPos = bj.position.z; } var ri = bi.boundingRadius, rj = bj.boundingRadius, boundA1 = biPos - ri, boundA2 = biPos + ri, boundB1 = bjPos - rj, boundB2 = bjPos + rj; return boundB1 < boundA2; }; /** * Computes the variance of the body positions and estimates the best * axis to use. Will automatically set property .axisIndex. * @method autoDetectAxis */ SAPBroadphase.prototype.autoDetectAxis = function(){ var sumX=0, sumX2=0, sumY=0, sumY2=0, sumZ=0, sumZ2=0, bodies = this.axisList, N = bodies.length, invN=1/N; for(var i=0; i!==N; i++){ var b = bodies[i]; var centerX = b.position.x; sumX += centerX; sumX2 += centerX*centerX; var centerY = b.position.y; sumY += centerY; sumY2 += centerY*centerY; var centerZ = b.position.z; sumZ += centerZ; sumZ2 += centerZ*centerZ; } var varianceX = sumX2 - sumX*sumX*invN, varianceY = sumY2 - sumY*sumY*invN, varianceZ = sumZ2 - sumZ*sumZ*invN; if(varianceX > varianceY){ if(varianceX > varianceZ){ this.axisIndex = 0; } else{ this.axisIndex = 2; } } else if(varianceY > varianceZ){ this.axisIndex = 1; } else{ this.axisIndex = 2; } }; /** * Returns all the bodies within an AABB. * @method aabbQuery * @param {World} world * @param {AABB} aabb * @param {array} result An array to store resulting bodies in. * @return {array} */ SAPBroadphase.prototype.aabbQuery = function(world, aabb, result){ result = result || []; if(this.dirty){ this.sortList(); this.dirty = false; } var axisIndex = this.axisIndex, axis = 'x'; if(axisIndex === 1){ axis = 'y'; } if(axisIndex === 2){ axis = 'z'; } var axisList = this.axisList; var lower = aabb.lowerBound[axis]; var upper = aabb.upperBound[axis]; for(var i = 0; i < axisList.length; i++){ var b = axisList[i]; if(b.aabbNeedsUpdate){ b.computeAABB(); } if(b.aabb.overlaps(aabb)){ result.push(b); } } return result; }; },{"../collision/Broadphase":26,"../shapes/Shape":65}],34:[function(require,module,exports){ module.exports = ConeTwistConstraint; var Constraint = require('./Constraint'); var PointToPointConstraint = require('./PointToPointConstraint'); var ConeEquation = require('../equations/ConeEquation'); var RotationalEquation = require('../equations/RotationalEquation'); var ContactEquation = require('../equations/ContactEquation'); var Vec3 = require('../math/Vec3'); /** * @class ConeTwistConstraint * @constructor * @author schteppe * @param {Body} bodyA * @param {Body} bodyB * @param {object} [options] * @param {Vec3} [options.pivotA] * @param {Vec3} [options.pivotB] * @param {Vec3} [options.axisA] * @param {Vec3} [options.axisB] * @param {Number} [options.maxForce=1e6] * @extends PointToPointConstraint */ function ConeTwistConstraint(bodyA, bodyB, options){ options = options || {}; var maxForce = typeof(options.maxForce) !== 'undefined' ? options.maxForce : 1e6; // Set pivot point in between var pivotA = options.pivotA ? options.pivotA.clone() : new Vec3(); var pivotB = options.pivotB ? options.pivotB.clone() : new Vec3(); this.axisA = options.axisA ? options.axisA.clone() : new Vec3(); this.axisB = options.axisB ? options.axisB.clone() : new Vec3(); PointToPointConstraint.call(this, bodyA, pivotA, bodyB, pivotB, maxForce); this.collideConnected = !!options.collideConnected; this.angle = typeof(options.angle) !== 'undefined' ? options.angle : 0; /** * @property {ConeEquation} coneEquation */ var c = this.coneEquation = new ConeEquation(bodyA,bodyB,options); /** * @property {RotationalEquation} twistEquation */ var t = this.twistEquation = new RotationalEquation(bodyA,bodyB,options); this.twistAngle = typeof(options.twistAngle) !== 'undefined' ? options.twistAngle : 0; // Make the cone equation push the bodies toward the cone axis, not outward c.maxForce = 0; c.minForce = -maxForce; // Make the twist equation add torque toward the initial position t.maxForce = 0; t.minForce = -maxForce; this.equations.push(c, t); } ConeTwistConstraint.prototype = new PointToPointConstraint(); ConeTwistConstraint.constructor = ConeTwistConstraint; var ConeTwistConstraint_update_tmpVec1 = new Vec3(); var ConeTwistConstraint_update_tmpVec2 = new Vec3(); ConeTwistConstraint.prototype.update = function(){ var bodyA = this.bodyA, bodyB = this.bodyB, cone = this.coneEquation, twist = this.twistEquation; PointToPointConstraint.prototype.update.call(this); // Update the axes to the cone constraint bodyA.vectorToWorldFrame(this.axisA, cone.axisA); bodyB.vectorToWorldFrame(this.axisB, cone.axisB); // Update the world axes in the twist constraint this.axisA.tangents(twist.axisA, twist.axisA); bodyA.vectorToWorldFrame(twist.axisA, twist.axisA); this.axisB.tangents(twist.axisB, twist.axisB); bodyB.vectorToWorldFrame(twist.axisB, twist.axisB); cone.angle = this.angle; twist.maxAngle = this.twistAngle; }; },{"../equations/ConeEquation":40,"../equations/ContactEquation":41,"../equations/RotationalEquation":44,"../math/Vec3":52,"./Constraint":35,"./PointToPointConstraint":39}],35:[function(require,module,exports){ module.exports = Constraint; var Utils = require('../utils/Utils'); /** * Constraint base class * @class Constraint * @author schteppe * @constructor * @param {Body} bodyA * @param {Body} bodyB * @param {object} [options] * @param {boolean} [options.collideConnected=true] * @param {boolean} [options.wakeUpBodies=true] */ function Constraint(bodyA, bodyB, options){ options = Utils.defaults(options,{ collideConnected : true, wakeUpBodies : true, }); /** * Equations to be solved in this constraint * @property equations * @type {Array} */ this.equations = []; /** * @property {Body} bodyA */ this.bodyA = bodyA; /** * @property {Body} bodyB */ this.bodyB = bodyB; /** * @property {Number} id */ this.id = Constraint.idCounter++; /** * Set to true if you want the bodies to collide when they are connected. * @property collideConnected * @type {boolean} */ this.collideConnected = options.collideConnected; if(options.wakeUpBodies){ if(bodyA){ bodyA.wakeUp(); } if(bodyB){ bodyB.wakeUp(); } } } /** * Update all the equations with data. * @method update */ Constraint.prototype.update = function(){ throw new Error("method update() not implmemented in this Constraint subclass!"); }; /** * Enables all equations in the constraint. * @method enable */ Constraint.prototype.enable = function(){ var eqs = this.equations; for(var i=0; i // G = [0 axisA 0 -axisB] GA.rotational.copy(axisA); axisB.negate(GB.rotational); var GW = this.computeGW() - this.targetVelocity, GiMf = this.computeGiMf(); var B = - GW * b - h * GiMf; return B; }; },{"../math/Mat3":49,"../math/Vec3":52,"./Equation":42}],46:[function(require,module,exports){ var Utils = require('../utils/Utils'); module.exports = ContactMaterial; /** * Defines what happens when two materials meet. * @class ContactMaterial * @constructor * @param {Material} m1 * @param {Material} m2 * @param {object} [options] * @param {Number} [options.friction=0.3] * @param {Number} [options.restitution=0.3] * @param {number} [options.contactEquationStiffness=1e7] * @param {number} [options.contactEquationRelaxation=3] * @param {number} [options.frictionEquationStiffness=1e7] * @param {Number} [options.frictionEquationRelaxation=3] */ function ContactMaterial(m1, m2, options){ options = Utils.defaults(options, { friction: 0.3, restitution: 0.3, contactEquationStiffness: 1e7, contactEquationRelaxation: 3, frictionEquationStiffness: 1e7, frictionEquationRelaxation: 3 }); /** * Identifier of this material * @property {Number} id */ this.id = ContactMaterial.idCounter++; /** * Participating materials * @property {Array} materials * @todo Should be .materialA and .materialB instead */ this.materials = [m1, m2]; /** * Friction coefficient * @property {Number} friction */ this.friction = options.friction; /** * Restitution coefficient * @property {Number} restitution */ this.restitution = options.restitution; /** * Stiffness of the produced contact equations * @property {Number} contactEquationStiffness */ this.contactEquationStiffness = options.contactEquationStiffness; /** * Relaxation time of the produced contact equations * @property {Number} contactEquationRelaxation */ this.contactEquationRelaxation = options.contactEquationRelaxation; /** * Stiffness of the produced friction equations * @property {Number} frictionEquationStiffness */ this.frictionEquationStiffness = options.frictionEquationStiffness; /** * Relaxation time of the produced friction equations * @property {Number} frictionEquationRelaxation */ this.frictionEquationRelaxation = options.frictionEquationRelaxation; } ContactMaterial.idCounter = 0; },{"../utils/Utils":75}],47:[function(require,module,exports){ module.exports = Material; /** * Defines a physics material. * @class Material * @constructor * @param {object} [options] * @author schteppe */ function Material(options){ var name = ''; options = options || {}; // Backwards compatibility fix if(typeof(options) === 'string'){ name = options; options = {}; } else if(typeof(options) === 'object') { name = ''; } /** * @property name * @type {String} */ this.name = name; /** * material id. * @property id * @type {number} */ this.id = Material.idCounter++; /** * Friction for this material. If non-negative, it will be used instead of the friction given by ContactMaterials. If there's no matching ContactMaterial, the value from .defaultContactMaterial in the World will be used. * @property {number} friction */ this.friction = typeof(options.friction) !== 'undefined' ? options.friction : -1; /** * Restitution for this material. If non-negative, it will be used instead of the restitution given by ContactMaterials. If there's no matching ContactMaterial, the value from .defaultContactMaterial in the World will be used. * @property {number} restitution */ this.restitution = typeof(options.restitution) !== 'undefined' ? options.restitution : -1; } Material.idCounter = 0; },{}],48:[function(require,module,exports){ module.exports = JacobianElement; var Vec3 = require('./Vec3'); /** * An element containing 6 entries, 3 spatial and 3 rotational degrees of freedom. * @class JacobianElement * @constructor */ function JacobianElement(){ /** * @property {Vec3} spatial */ this.spatial = new Vec3(); /** * @property {Vec3} rotational */ this.rotational = new Vec3(); } /** * Multiply with other JacobianElement * @method multiplyElement * @param {JacobianElement} element * @return {Number} */ JacobianElement.prototype.multiplyElement = function(element){ return element.spatial.dot(this.spatial) + element.rotational.dot(this.rotational); }; /** * Multiply with two vectors * @method multiplyVectors * @param {Vec3} spatial * @param {Vec3} rotational * @return {Number} */ JacobianElement.prototype.multiplyVectors = function(spatial,rotational){ return spatial.dot(this.spatial) + rotational.dot(this.rotational); }; },{"./Vec3":52}],49:[function(require,module,exports){ module.exports = Mat3; var Vec3 = require('./Vec3'); /** * A 3x3 matrix. * @class Mat3 * @constructor * @param array elements Array of nine elements. Optional. * @author schteppe / http://github.com/schteppe */ function Mat3(elements){ /** * A vector of length 9, containing all matrix elements * @property {Array} elements */ if(elements){ this.elements = elements; } else { this.elements = [0,0,0,0,0,0,0,0,0]; } } /** * Sets the matrix to identity * @method identity * @todo Should perhaps be renamed to setIdentity() to be more clear. * @todo Create another function that immediately creates an identity matrix eg. eye() */ Mat3.prototype.identity = function(){ var e = this.elements; e[0] = 1; e[1] = 0; e[2] = 0; e[3] = 0; e[4] = 1; e[5] = 0; e[6] = 0; e[7] = 0; e[8] = 1; }; /** * Set all elements to zero * @method setZero */ Mat3.prototype.setZero = function(){ var e = this.elements; e[0] = 0; e[1] = 0; e[2] = 0; e[3] = 0; e[4] = 0; e[5] = 0; e[6] = 0; e[7] = 0; e[8] = 0; }; /** * Sets the matrix diagonal elements from a Vec3 * @method setTrace * @param {Vec3} vec3 */ Mat3.prototype.setTrace = function(vec3){ var e = this.elements; e[0] = vec3.x; e[4] = vec3.y; e[8] = vec3.z; }; /** * Gets the matrix diagonal elements * @method getTrace * @return {Vec3} */ Mat3.prototype.getTrace = function(target){ var target = target || new Vec3(); var e = this.elements; target.x = e[0]; target.y = e[4]; target.z = e[8]; }; /** * Matrix-Vector multiplication * @method vmult * @param {Vec3} v The vector to multiply with * @param {Vec3} target Optional, target to save the result in. */ Mat3.prototype.vmult = function(v,target){ target = target || new Vec3(); var e = this.elements, x = v.x, y = v.y, z = v.z; target.x = e[0]*x + e[1]*y + e[2]*z; target.y = e[3]*x + e[4]*y + e[5]*z; target.z = e[6]*x + e[7]*y + e[8]*z; return target; }; /** * Matrix-scalar multiplication * @method smult * @param {Number} s */ Mat3.prototype.smult = function(s){ for(var i=0; i1 acos and sqrt will produce errors, this cant happen if quaternion is normalised var angle = 2 * Math.acos(this.w); var s = Math.sqrt(1-this.w*this.w); // assuming quaternion normalised then w is less than 1, so term always positive. if (s < 0.001) { // test to avoid divide by zero, s is always positive due to sqrt // if s close to zero then direction of axis not important targetAxis.x = this.x; // if it is important that axis is normalised then replace with x=1; y=z=0; targetAxis.y = this.y; targetAxis.z = this.z; } else { targetAxis.x = this.x / s; // normalise axis targetAxis.y = this.y / s; targetAxis.z = this.z / s; } return [targetAxis,angle]; }; var sfv_t1 = new Vec3(), sfv_t2 = new Vec3(); /** * Set the quaternion value given two vectors. The resulting rotation will be the needed rotation to rotate u to v. * @method setFromVectors * @param {Vec3} u * @param {Vec3} v */ Quaternion.prototype.setFromVectors = function(u,v){ if(u.isAntiparallelTo(v)){ var t1 = sfv_t1; var t2 = sfv_t2; u.tangents(t1,t2); this.setFromAxisAngle(t1,Math.PI); } else { var a = u.cross(v); this.x = a.x; this.y = a.y; this.z = a.z; this.w = Math.sqrt(Math.pow(u.norm(),2) * Math.pow(v.norm(),2)) + u.dot(v); this.normalize(); } return this; }; /** * Quaternion multiplication * @method mult * @param {Quaternion} q * @param {Quaternion} target Optional. * @return {Quaternion} */ var Quaternion_mult_va = new Vec3(); var Quaternion_mult_vb = new Vec3(); var Quaternion_mult_vaxvb = new Vec3(); Quaternion.prototype.mult = function(q,target){ target = target || new Quaternion(); var ax = this.x, ay = this.y, az = this.z, aw = this.w, bx = q.x, by = q.y, bz = q.z, bw = q.w; target.x = ax * bw + aw * bx + ay * bz - az * by; target.y = ay * bw + aw * by + az * bx - ax * bz; target.z = az * bw + aw * bz + ax * by - ay * bx; target.w = aw * bw - ax * bx - ay * by - az * bz; return target; }; /** * Get the inverse quaternion rotation. * @method inverse * @param {Quaternion} target * @return {Quaternion} */ Quaternion.prototype.inverse = function(target){ var x = this.x, y = this.y, z = this.z, w = this.w; target = target || new Quaternion(); this.conjugate(target); var inorm2 = 1/(x*x + y*y + z*z + w*w); target.x *= inorm2; target.y *= inorm2; target.z *= inorm2; target.w *= inorm2; return target; }; /** * Get the quaternion conjugate * @method conjugate * @param {Quaternion} target * @return {Quaternion} */ Quaternion.prototype.conjugate = function(target){ target = target || new Quaternion(); target.x = -this.x; target.y = -this.y; target.z = -this.z; target.w = this.w; return target; }; /** * Normalize the quaternion. Note that this changes the values of the quaternion. * @method normalize */ Quaternion.prototype.normalize = function(){ var l = Math.sqrt(this.x*this.x+this.y*this.y+this.z*this.z+this.w*this.w); if ( l === 0 ) { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } else { l = 1 / l; this.x *= l; this.y *= l; this.z *= l; this.w *= l; } return this; }; /** * Approximation of quaternion normalization. Works best when quat is already almost-normalized. * @method normalizeFast * @see http://jsperf.com/fast-quaternion-normalization * @author unphased, https://github.com/unphased */ Quaternion.prototype.normalizeFast = function () { var f = (3.0-(this.x*this.x+this.y*this.y+this.z*this.z+this.w*this.w))/2.0; if ( f === 0 ) { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } else { this.x *= f; this.y *= f; this.z *= f; this.w *= f; } return this; }; /** * Multiply the quaternion by a vector * @method vmult * @param {Vec3} v * @param {Vec3} target Optional * @return {Vec3} */ Quaternion.prototype.vmult = function(v,target){ target = target || new Vec3(); var x = v.x, y = v.y, z = v.z; var qx = this.x, qy = this.y, qz = this.z, qw = this.w; // q*v var ix = qw * x + qy * z - qz * y, iy = qw * y + qz * x - qx * z, iz = qw * z + qx * y - qy * x, iw = -qx * x - qy * y - qz * z; target.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; target.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; target.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return target; }; /** * Copies value of source to this quaternion. * @method copy * @param {Quaternion} source * @return {Quaternion} this */ Quaternion.prototype.copy = function(source){ this.x = source.x; this.y = source.y; this.z = source.z; this.w = source.w; return this; }; /** * Convert the quaternion to euler angle representation. Order: YZX, as this page describes: http://www.euclideanspace.com/maths/standards/index.htm * @method toEuler * @param {Vec3} target * @param string order Three-character string e.g. "YZX", which also is default. */ Quaternion.prototype.toEuler = function(target,order){ order = order || "YZX"; var heading, attitude, bank; var x = this.x, y = this.y, z = this.z, w = this.w; switch(order){ case "YZX": var test = x*y + z*w; if (test > 0.499) { // singularity at north pole heading = 2 * Math.atan2(x,w); attitude = Math.PI/2; bank = 0; } if (test < -0.499) { // singularity at south pole heading = -2 * Math.atan2(x,w); attitude = - Math.PI/2; bank = 0; } if(isNaN(heading)){ var sqx = x*x; var sqy = y*y; var sqz = z*z; heading = Math.atan2(2*y*w - 2*x*z , 1 - 2*sqy - 2*sqz); // Heading attitude = Math.asin(2*test); // attitude bank = Math.atan2(2*x*w - 2*y*z , 1 - 2*sqx - 2*sqz); // bank } break; default: throw new Error("Euler order "+order+" not supported yet."); } target.y = heading; target.z = attitude; target.x = bank; }; /** * See http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m * @method setFromEuler * @param {Number} x * @param {Number} y * @param {Number} z * @param {String} order The order to apply angles: 'XYZ' or 'YXZ' or any other combination */ Quaternion.prototype.setFromEuler = function ( x, y, z, order ) { order = order || "XYZ"; var c1 = Math.cos( x / 2 ); var c2 = Math.cos( y / 2 ); var c3 = Math.cos( z / 2 ); var s1 = Math.sin( x / 2 ); var s2 = Math.sin( y / 2 ); var s3 = Math.sin( z / 2 ); if ( order === 'XYZ' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } return this; }; /** * @method clone * @return {Quaternion} */ Quaternion.prototype.clone = function(){ return new Quaternion(this.x, this.y, this.z, this.w); }; /** * Performs a spherical linear interpolation between two quat * * @method slerp * @param {Quaternion} toQuat second operand * @param {Number} t interpolation amount between the self quaternion and toQuat * @param {Quaternion} [target] A quaternion to store the result in. If not provided, a new one will be created. * @returns {Quaternion} The "target" object */ Quaternion.prototype.slerp = function (toQuat, t, target) { target = target || new Quaternion(); var ax = this.x, ay = this.y, az = this.z, aw = this.w, bx = toQuat.x, by = toQuat.y, bz = toQuat.z, bw = toQuat.w; var omega, cosom, sinom, scale0, scale1; // calc cosine cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary) if ( cosom < 0.0 ) { cosom = -cosom; bx = - bx; by = - by; bz = - bz; bw = - bw; } // calculate coefficients if ( (1.0 - cosom) > 0.000001 ) { // standard case (slerp) omega = Math.acos(cosom); sinom = Math.sin(omega); scale0 = Math.sin((1.0 - t) * omega) / sinom; scale1 = Math.sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values target.x = scale0 * ax + scale1 * bx; target.y = scale0 * ay + scale1 * by; target.z = scale0 * az + scale1 * bz; target.w = scale0 * aw + scale1 * bw; return target; }; /** * Rotate an absolute orientation quaternion given an angular velocity and a time step. * @param {Vec3} angularVelocity * @param {number} dt * @param {Vec3} angularFactor * @param {Quaternion} target * @return {Quaternion} The "target" object */ Quaternion.prototype.integrate = function(angularVelocity, dt, angularFactor, target){ target = target || new Quaternion(); var ax = angularVelocity.x * angularFactor.x, ay = angularVelocity.y * angularFactor.y, az = angularVelocity.z * angularFactor.z, bx = this.x, by = this.y, bz = this.z, bw = this.w; var half_dt = dt * 0.5; target.x += half_dt * (ax * bw + ay * bz - az * by); target.y += half_dt * (ay * bw + az * bx - ax * bz); target.z += half_dt * (az * bw + ax * by - ay * bx); target.w += half_dt * (- ax * bx - ay * by - az * bz); return target; }; },{"./Vec3":52}],51:[function(require,module,exports){ var Vec3 = require('./Vec3'); var Quaternion = require('./Quaternion'); module.exports = Transform; /** * @class Transform * @constructor */ function Transform(options) { options = options || {}; /** * @property {Vec3} position */ this.position = new Vec3(); if(options.position){ this.position.copy(options.position); } /** * @property {Quaternion} quaternion */ this.quaternion = new Quaternion(); if(options.quaternion){ this.quaternion.copy(options.quaternion); } } var tmpQuat = new Quaternion(); /** * @static * @method pointToLocaFrame * @param {Vec3} position * @param {Quaternion} quaternion * @param {Vec3} worldPoint * @param {Vec3} result */ Transform.pointToLocalFrame = function(position, quaternion, worldPoint, result){ var result = result || new Vec3(); worldPoint.vsub(position, result); quaternion.conjugate(tmpQuat); tmpQuat.vmult(result, result); return result; }; /** * Get a global point in local transform coordinates. * @method pointToLocal * @param {Vec3} point * @param {Vec3} result * @return {Vec3} The "result" vector object */ Transform.prototype.pointToLocal = function(worldPoint, result){ return Transform.pointToLocalFrame(this.position, this.quaternion, worldPoint, result); }; /** * @static * @method pointToWorldFrame * @param {Vec3} position * @param {Vec3} quaternion * @param {Vec3} localPoint * @param {Vec3} result */ Transform.pointToWorldFrame = function(position, quaternion, localPoint, result){ var result = result || new Vec3(); quaternion.vmult(localPoint, result); result.vadd(position, result); return result; }; /** * Get a local point in global transform coordinates. * @method pointToWorld * @param {Vec3} point * @param {Vec3} result * @return {Vec3} The "result" vector object */ Transform.prototype.pointToWorld = function(localPoint, result){ return Transform.pointToWorldFrame(this.position, this.quaternion, localPoint, result); }; Transform.prototype.vectorToWorldFrame = function(localVector, result){ var result = result || new Vec3(); this.quaternion.vmult(localVector, result); return result; }; Transform.vectorToWorldFrame = function(quaternion, localVector, result){ quaternion.vmult(localVector, result); return result; }; Transform.vectorToLocalFrame = function(position, quaternion, worldVector, result){ var result = result || new Vec3(); quaternion.w *= -1; quaternion.vmult(worldVector, result); quaternion.w *= -1; return result; }; },{"./Quaternion":50,"./Vec3":52}],52:[function(require,module,exports){ module.exports = Vec3; var Mat3 = require('./Mat3'); /** * 3-dimensional vector * @class Vec3 * @constructor * @param {Number} x * @param {Number} y * @param {Number} z * @author schteppe * @example * var v = new Vec3(1, 2, 3); * console.log('x=' + v.x); // x=1 */ function Vec3(x,y,z){ /** * @property x * @type {Number} */ this.x = x||0.0; /** * @property y * @type {Number} */ this.y = y||0.0; /** * @property z * @type {Number} */ this.z = z||0.0; } /** * @static * @property {Vec3} ZERO */ Vec3.ZERO = new Vec3(0, 0, 0); /** * @static * @property {Vec3} UNIT_X */ Vec3.UNIT_X = new Vec3(1, 0, 0); /** * @static * @property {Vec3} UNIT_Y */ Vec3.UNIT_Y = new Vec3(0, 1, 0); /** * @static * @property {Vec3} UNIT_Z */ Vec3.UNIT_Z = new Vec3(0, 0, 1); /** * Vector cross product * @method cross * @param {Vec3} v * @param {Vec3} target Optional. Target to save in. * @return {Vec3} */ Vec3.prototype.cross = function(v,target){ var vx=v.x, vy=v.y, vz=v.z, x=this.x, y=this.y, z=this.z; target = target || new Vec3(); target.x = (y * vz) - (z * vy); target.y = (z * vx) - (x * vz); target.z = (x * vy) - (y * vx); return target; }; /** * Set the vectors' 3 elements * @method set * @param {Number} x * @param {Number} y * @param {Number} z * @return Vec3 */ Vec3.prototype.set = function(x,y,z){ this.x = x; this.y = y; this.z = z; return this; }; /** * Set all components of the vector to zero. * @method setZero */ Vec3.prototype.setZero = function(){ this.x = this.y = this.z = 0; }; /** * Vector addition * @method vadd * @param {Vec3} v * @param {Vec3} target Optional. * @return {Vec3} */ Vec3.prototype.vadd = function(v,target){ if(target){ target.x = v.x + this.x; target.y = v.y + this.y; target.z = v.z + this.z; } else { return new Vec3(this.x + v.x, this.y + v.y, this.z + v.z); } }; /** * Vector subtraction * @method vsub * @param {Vec3} v * @param {Vec3} target Optional. Target to save in. * @return {Vec3} */ Vec3.prototype.vsub = function(v,target){ if(target){ target.x = this.x - v.x; target.y = this.y - v.y; target.z = this.z - v.z; } else { return new Vec3(this.x-v.x, this.y-v.y, this.z-v.z); } }; /** * Get the cross product matrix a_cross from a vector, such that a x b = a_cross * b = c * @method crossmat * @see http://www8.cs.umu.se/kurser/TDBD24/VT06/lectures/Lecture6.pdf * @return {Mat3} */ Vec3.prototype.crossmat = function(){ return new Mat3([ 0, -this.z, this.y, this.z, 0, -this.x, -this.y, this.x, 0]); }; /** * Normalize the vector. Note that this changes the values in the vector. * @method normalize * @return {Number} Returns the norm of the vector */ Vec3.prototype.normalize = function(){ var x=this.x, y=this.y, z=this.z; var n = Math.sqrt(x*x + y*y + z*z); if(n>0.0){ var invN = 1/n; this.x *= invN; this.y *= invN; this.z *= invN; } else { // Make something up this.x = 0; this.y = 0; this.z = 0; } return n; }; /** * Get the version of this vector that is of length 1. * @method unit * @param {Vec3} target Optional target to save in * @return {Vec3} Returns the unit vector */ Vec3.prototype.unit = function(target){ target = target || new Vec3(); var x=this.x, y=this.y, z=this.z; var ninv = Math.sqrt(x*x + y*y + z*z); if(ninv>0.0){ ninv = 1.0/ninv; target.x = x * ninv; target.y = y * ninv; target.z = z * ninv; } else { target.x = 1; target.y = 0; target.z = 0; } return target; }; /** * Get the length of the vector * @method norm * @return {Number} * @deprecated Use .length() instead */ Vec3.prototype.norm = function(){ var x=this.x, y=this.y, z=this.z; return Math.sqrt(x*x + y*y + z*z); }; /** * Get the length of the vector * @method length * @return {Number} */ Vec3.prototype.length = Vec3.prototype.norm; /** * Get the squared length of the vector * @method norm2 * @return {Number} * @deprecated Use .lengthSquared() instead. */ Vec3.prototype.norm2 = function(){ return this.dot(this); }; /** * Get the squared length of the vector. * @method lengthSquared * @return {Number} */ Vec3.prototype.lengthSquared = Vec3.prototype.norm2; /** * Get distance from this point to another point * @method distanceTo * @param {Vec3} p * @return {Number} */ Vec3.prototype.distanceTo = function(p){ var x=this.x, y=this.y, z=this.z; var px=p.x, py=p.y, pz=p.z; return Math.sqrt((px-x)*(px-x)+ (py-y)*(py-y)+ (pz-z)*(pz-z)); }; /** * Get squared distance from this point to another point * @method distanceSquared * @param {Vec3} p * @return {Number} */ Vec3.prototype.distanceSquared = function(p){ var x=this.x, y=this.y, z=this.z; var px=p.x, py=p.y, pz=p.z; return (px-x)*(px-x) + (py-y)*(py-y) + (pz-z)*(pz-z); }; /** * Multiply all the components of the vector with a scalar. * @deprecated Use .scale instead * @method mult * @param {Number} scalar * @param {Vec3} target The vector to save the result in. * @return {Vec3} * @deprecated Use .scale() instead */ Vec3.prototype.mult = function(scalar,target){ target = target || new Vec3(); var x = this.x, y = this.y, z = this.z; target.x = scalar * x; target.y = scalar * y; target.z = scalar * z; return target; }; /** * Multiply the vector with an other vector, component-wise. * @method mult * @param {Number} vector * @param {Vec3} target The vector to save the result in. * @return {Vec3} */ Vec3.prototype.vmul = function(vector, target){ target = target || new Vec3(); target.x = vector.x * this.x; target.y = vector.y * this.y; target.z = vector.z * this.z; return target; }; /** * Multiply the vector with a scalar. * @method scale * @param {Number} scalar * @param {Vec3} target * @return {Vec3} */ Vec3.prototype.scale = Vec3.prototype.mult; /** * Scale a vector and add it to this vector. Save the result in "target". (target = this + vector * scalar) * @method addScaledVector * @param {Number} scalar * @param {Vec3} vector * @param {Vec3} target The vector to save the result in. * @return {Vec3} */ Vec3.prototype.addScaledVector = function(scalar, vector, target){ target = target || new Vec3(); target.x = this.x + scalar * vector.x; target.y = this.y + scalar * vector.y; target.z = this.z + scalar * vector.z; return target; }; /** * Calculate dot product * @method dot * @param {Vec3} v * @return {Number} */ Vec3.prototype.dot = function(v){ return this.x * v.x + this.y * v.y + this.z * v.z; }; /** * @method isZero * @return bool */ Vec3.prototype.isZero = function(){ return this.x===0 && this.y===0 && this.z===0; }; /** * Make the vector point in the opposite direction. * @method negate * @param {Vec3} target Optional target to save in * @return {Vec3} */ Vec3.prototype.negate = function(target){ target = target || new Vec3(); target.x = -this.x; target.y = -this.y; target.z = -this.z; return target; }; /** * Compute two artificial tangents to the vector * @method tangents * @param {Vec3} t1 Vector object to save the first tangent in * @param {Vec3} t2 Vector object to save the second tangent in */ var Vec3_tangents_n = new Vec3(); var Vec3_tangents_randVec = new Vec3(); Vec3.prototype.tangents = function(t1,t2){ var norm = this.norm(); if(norm>0.0){ var n = Vec3_tangents_n; var inorm = 1/norm; n.set(this.x*inorm,this.y*inorm,this.z*inorm); var randVec = Vec3_tangents_randVec; if(Math.abs(n.x) < 0.9){ randVec.set(1,0,0); n.cross(randVec,t1); } else { randVec.set(0,1,0); n.cross(randVec,t1); } n.cross(t1,t2); } else { // The normal length is zero, make something up t1.set(1, 0, 0); t2.set(0, 1, 0); } }; /** * Converts to a more readable format * @method toString * @return string */ Vec3.prototype.toString = function(){ return this.x+","+this.y+","+this.z; }; /** * Converts to an array * @method toArray * @return Array */ Vec3.prototype.toArray = function(){ return [this.x, this.y, this.z]; }; /** * Copies value of source to this vector. * @method copy * @param {Vec3} source * @return {Vec3} this */ Vec3.prototype.copy = function(source){ this.x = source.x; this.y = source.y; this.z = source.z; return this; }; /** * Do a linear interpolation between two vectors * @method lerp * @param {Vec3} v * @param {Number} t A number between 0 and 1. 0 will make this function return u, and 1 will make it return v. Numbers in between will generate a vector in between them. * @param {Vec3} target */ Vec3.prototype.lerp = function(v,t,target){ var x=this.x, y=this.y, z=this.z; target.x = x + (v.x-x)*t; target.y = y + (v.y-y)*t; target.z = z + (v.z-z)*t; }; /** * Check if a vector equals is almost equal to another one. * @method almostEquals * @param {Vec3} v * @param {Number} precision * @return bool */ Vec3.prototype.almostEquals = function(v,precision){ if(precision===undefined){ precision = 1e-6; } if( Math.abs(this.x-v.x)>precision || Math.abs(this.y-v.y)>precision || Math.abs(this.z-v.z)>precision){ return false; } return true; }; /** * Check if a vector is almost zero * @method almostZero * @param {Number} precision */ Vec3.prototype.almostZero = function(precision){ if(precision===undefined){ precision = 1e-6; } if( Math.abs(this.x)>precision || Math.abs(this.y)>precision || Math.abs(this.z)>precision){ return false; } return true; }; var antip_neg = new Vec3(); /** * Check if the vector is anti-parallel to another vector. * @method isAntiparallelTo * @param {Vec3} v * @param {Number} precision Set to zero for exact comparisons * @return {Boolean} */ Vec3.prototype.isAntiparallelTo = function(v,precision){ this.negate(antip_neg); return antip_neg.almostEquals(v,precision); }; /** * Clone the vector * @method clone * @return {Vec3} */ Vec3.prototype.clone = function(){ return new Vec3(this.x, this.y, this.z); }; },{"./Mat3":49}],53:[function(require,module,exports){ module.exports = Body; var EventTarget = require('../utils/EventTarget'); var Shape = require('../shapes/Shape'); var Vec3 = require('../math/Vec3'); var Mat3 = require('../math/Mat3'); var Quaternion = require('../math/Quaternion'); var Material = require('../material/Material'); var AABB = require('../collision/AABB'); var Box = require('../shapes/Box'); /** * Base class for all body types. * @class Body * @constructor * @extends EventTarget * @param {object} [options] * @param {Vec3} [options.position] * @param {Vec3} [options.velocity] * @param {Vec3} [options.angularVelocity] * @param {Quaternion} [options.quaternion] * @param {number} [options.mass] * @param {Material} [options.material] * @param {number} [options.type] * @param {number} [options.linearDamping=0.01] * @param {number} [options.angularDamping=0.01] * @param {boolean} [options.allowSleep=true] * @param {number} [options.sleepSpeedLimit=0.1] * @param {number} [options.sleepTimeLimit=1] * @param {number} [options.collisionFilterGroup=1] * @param {number} [options.collisionFilterMask=1] * @param {boolean} [options.fixedRotation=false] * @param {Vec3} [options.linearFactor] * @param {Vec3} [options.angularFactor] * @param {Shape} [options.shape] * @example * var body = new Body({ * mass: 1 * }); * var shape = new Sphere(1); * body.addShape(shape); * world.addBody(body); */ function Body(options){ options = options || {}; EventTarget.apply(this); this.id = Body.idCounter++; /** * Reference to the world the body is living in * @property world * @type {World} */ this.world = null; /** * Callback function that is used BEFORE stepping the system. Use it to apply forces, for example. Inside the function, "this" will refer to this Body object. * @property preStep * @type {Function} * @deprecated Use World events instead */ this.preStep = null; /** * Callback function that is used AFTER stepping the system. Inside the function, "this" will refer to this Body object. * @property postStep * @type {Function} * @deprecated Use World events instead */ this.postStep = null; this.vlambda = new Vec3(); /** * @property {Number} collisionFilterGroup */ this.collisionFilterGroup = typeof(options.collisionFilterGroup) === 'number' ? options.collisionFilterGroup : 1; /** * @property {Number} collisionFilterMask */ this.collisionFilterMask = typeof(options.collisionFilterMask) === 'number' ? options.collisionFilterMask : 1; /** * Whether to produce contact forces when in contact with other bodies. Note that contacts will be generated, but they will be disabled. * @property {Number} collisionResponse */ this.collisionResponse = true; /** * @property position * @type {Vec3} */ this.position = new Vec3(); /** * @property {Vec3} previousPosition */ this.previousPosition = new Vec3(); /** * Interpolated position of the body. * @property {Vec3} interpolatedPosition */ this.interpolatedPosition = new Vec3(); /** * Initial position of the body * @property initPosition * @type {Vec3} */ this.initPosition = new Vec3(); if(options.position){ this.position.copy(options.position); this.previousPosition.copy(options.position); this.interpolatedPosition.copy(options.position); this.initPosition.copy(options.position); } /** * @property velocity * @type {Vec3} */ this.velocity = new Vec3(); if(options.velocity){ this.velocity.copy(options.velocity); } /** * @property initVelocity * @type {Vec3} */ this.initVelocity = new Vec3(); /** * Linear force on the body * @property force * @type {Vec3} */ this.force = new Vec3(); var mass = typeof(options.mass) === 'number' ? options.mass : 0; /** * @property mass * @type {Number} * @default 0 */ this.mass = mass; /** * @property invMass * @type {Number} */ this.invMass = mass > 0 ? 1.0 / mass : 0; /** * @property material * @type {Material} */ this.material = options.material || null; /** * @property linearDamping * @type {Number} */ this.linearDamping = typeof(options.linearDamping) === 'number' ? options.linearDamping : 0.01; /** * One of: Body.DYNAMIC, Body.STATIC and Body.KINEMATIC. * @property type * @type {Number} */ this.type = (mass <= 0.0 ? Body.STATIC : Body.DYNAMIC); if(typeof(options.type) === typeof(Body.STATIC)){ this.type = options.type; } /** * If true, the body will automatically fall to sleep. * @property allowSleep * @type {Boolean} * @default true */ this.allowSleep = typeof(options.allowSleep) !== 'undefined' ? options.allowSleep : true; /** * Current sleep state. * @property sleepState * @type {Number} */ this.sleepState = 0; /** * If the speed (the norm of the velocity) is smaller than this value, the body is considered sleepy. * @property sleepSpeedLimit * @type {Number} * @default 0.1 */ this.sleepSpeedLimit = typeof(options.sleepSpeedLimit) !== 'undefined' ? options.sleepSpeedLimit : 0.1; /** * If the body has been sleepy for this sleepTimeLimit seconds, it is considered sleeping. * @property sleepTimeLimit * @type {Number} * @default 1 */ this.sleepTimeLimit = typeof(options.sleepTimeLimit) !== 'undefined' ? options.sleepTimeLimit : 1; this.timeLastSleepy = 0; this._wakeUpAfterNarrowphase = false; /** * Rotational force on the body, around center of mass * @property {Vec3} torque */ this.torque = new Vec3(); /** * Orientation of the body * @property quaternion * @type {Quaternion} */ this.quaternion = new Quaternion(); /** * @property initQuaternion * @type {Quaternion} */ this.initQuaternion = new Quaternion(); /** * @property {Quaternion} previousQuaternion */ this.previousQuaternion = new Quaternion(); /** * Interpolated orientation of the body. * @property {Quaternion} interpolatedQuaternion */ this.interpolatedQuaternion = new Quaternion(); if(options.quaternion){ this.quaternion.copy(options.quaternion); this.initQuaternion.copy(options.quaternion); this.previousQuaternion.copy(options.quaternion); this.interpolatedQuaternion.copy(options.quaternion); } /** * @property angularVelocity * @type {Vec3} */ this.angularVelocity = new Vec3(); if(options.angularVelocity){ this.angularVelocity.copy(options.angularVelocity); } /** * @property initAngularVelocity * @type {Vec3} */ this.initAngularVelocity = new Vec3(); /** * @property shapes * @type {array} */ this.shapes = []; /** * @property shapeOffsets * @type {array} */ this.shapeOffsets = []; /** * @property shapeOrientations * @type {array} */ this.shapeOrientations = []; /** * @property inertia * @type {Vec3} */ this.inertia = new Vec3(); /** * @property {Vec3} invInertia */ this.invInertia = new Vec3(); /** * @property {Mat3} invInertiaWorld */ this.invInertiaWorld = new Mat3(); this.invMassSolve = 0; /** * @property {Vec3} invInertiaSolve */ this.invInertiaSolve = new Vec3(); /** * @property {Mat3} invInertiaWorldSolve */ this.invInertiaWorldSolve = new Mat3(); /** * Set to true if you don't want the body to rotate. Make sure to run .updateMassProperties() after changing this. * @property {Boolean} fixedRotation * @default false */ this.fixedRotation = typeof(options.fixedRotation) !== "undefined" ? options.fixedRotation : false; /** * @property {Number} angularDamping */ this.angularDamping = typeof(options.angularDamping) !== 'undefined' ? options.angularDamping : 0.01; /** * @property {Vec3} linearFactor */ this.linearFactor = new Vec3(1,1,1); if(options.linearFactor){ this.linearFactor.copy(options.linearFactor); } /** * @property {Vec3} angularFactor */ this.angularFactor = new Vec3(1,1,1); if(options.angularFactor){ this.angularFactor.copy(options.angularFactor); } /** * @property aabb * @type {AABB} */ this.aabb = new AABB(); /** * Indicates if the AABB needs to be updated before use. * @property aabbNeedsUpdate * @type {Boolean} */ this.aabbNeedsUpdate = true; this.wlambda = new Vec3(); if(options.shape){ this.addShape(options.shape); } this.updateMassProperties(); } Body.prototype = new EventTarget(); Body.prototype.constructor = Body; /** * Dispatched after two bodies collide. This event is dispatched on each * of the two bodies involved in the collision. * @event collide * @param {Body} body The body that was involved in the collision. * @param {ContactEquation} contact The details of the collision. */ Body.COLLIDE_EVENT_NAME = "collide"; /** * A dynamic body is fully simulated. Can be moved manually by the user, but normally they move according to forces. A dynamic body can collide with all body types. A dynamic body always has finite, non-zero mass. * @static * @property DYNAMIC * @type {Number} */ Body.DYNAMIC = 1; /** * A static body does not move during simulation and behaves as if it has infinite mass. Static bodies can be moved manually by setting the position of the body. The velocity of a static body is always zero. Static bodies do not collide with other static or kinematic bodies. * @static * @property STATIC * @type {Number} */ Body.STATIC = 2; /** * A kinematic body moves under simulation according to its velocity. They do not respond to forces. They can be moved manually, but normally a kinematic body is moved by setting its velocity. A kinematic body behaves as if it has infinite mass. Kinematic bodies do not collide with other static or kinematic bodies. * @static * @property KINEMATIC * @type {Number} */ Body.KINEMATIC = 4; /** * @static * @property AWAKE * @type {number} */ Body.AWAKE = 0; /** * @static * @property SLEEPY * @type {number} */ Body.SLEEPY = 1; /** * @static * @property SLEEPING * @type {number} */ Body.SLEEPING = 2; Body.idCounter = 0; /** * Dispatched after a sleeping body has woken up. * @event wakeup */ Body.wakeupEvent = { type: "wakeup" }; /** * Wake the body up. * @method wakeUp */ Body.prototype.wakeUp = function(){ var s = this.sleepState; this.sleepState = 0; this._wakeUpAfterNarrowphase = false; if(s === Body.SLEEPING){ this.dispatchEvent(Body.wakeupEvent); } }; /** * Force body sleep * @method sleep */ Body.prototype.sleep = function(){ this.sleepState = Body.SLEEPING; this.velocity.set(0,0,0); this.angularVelocity.set(0,0,0); this._wakeUpAfterNarrowphase = false; }; /** * Dispatched after a body has gone in to the sleepy state. * @event sleepy */ Body.sleepyEvent = { type: "sleepy" }; /** * Dispatched after a body has fallen asleep. * @event sleep */ Body.sleepEvent = { type: "sleep" }; /** * Called every timestep to update internal sleep timer and change sleep state if needed. * @method sleepTick * @param {Number} time The world time in seconds */ Body.prototype.sleepTick = function(time){ if(this.allowSleep){ var sleepState = this.sleepState; var speedSquared = this.velocity.norm2() + this.angularVelocity.norm2(); var speedLimitSquared = Math.pow(this.sleepSpeedLimit,2); if(sleepState===Body.AWAKE && speedSquared < speedLimitSquared){ this.sleepState = Body.SLEEPY; // Sleepy this.timeLastSleepy = time; this.dispatchEvent(Body.sleepyEvent); } else if(sleepState===Body.SLEEPY && speedSquared > speedLimitSquared){ this.wakeUp(); // Wake up } else if(sleepState===Body.SLEEPY && (time - this.timeLastSleepy ) > this.sleepTimeLimit){ this.sleep(); // Sleeping this.dispatchEvent(Body.sleepEvent); } } }; /** * If the body is sleeping, it should be immovable / have infinite mass during solve. We solve it by having a separate "solve mass". * @method updateSolveMassProperties */ Body.prototype.updateSolveMassProperties = function(){ if(this.sleepState === Body.SLEEPING || this.type === Body.KINEMATIC){ this.invMassSolve = 0; this.invInertiaSolve.setZero(); this.invInertiaWorldSolve.setZero(); } else { this.invMassSolve = this.invMass; this.invInertiaSolve.copy(this.invInertia); this.invInertiaWorldSolve.copy(this.invInertiaWorld); } }; /** * Convert a world point to local body frame. * @method pointToLocalFrame * @param {Vec3} worldPoint * @param {Vec3} result * @return {Vec3} */ Body.prototype.pointToLocalFrame = function(worldPoint,result){ var result = result || new Vec3(); worldPoint.vsub(this.position,result); this.quaternion.conjugate().vmult(result,result); return result; }; /** * Convert a world vector to local body frame. * @method vectorToLocalFrame * @param {Vec3} worldPoint * @param {Vec3} result * @return {Vec3} */ Body.prototype.vectorToLocalFrame = function(worldVector, result){ var result = result || new Vec3(); this.quaternion.conjugate().vmult(worldVector,result); return result; }; /** * Convert a local body point to world frame. * @method pointToWorldFrame * @param {Vec3} localPoint * @param {Vec3} result * @return {Vec3} */ Body.prototype.pointToWorldFrame = function(localPoint,result){ var result = result || new Vec3(); this.quaternion.vmult(localPoint,result); result.vadd(this.position,result); return result; }; /** * Convert a local body point to world frame. * @method vectorToWorldFrame * @param {Vec3} localVector * @param {Vec3} result * @return {Vec3} */ Body.prototype.vectorToWorldFrame = function(localVector, result){ var result = result || new Vec3(); this.quaternion.vmult(localVector, result); return result; }; var tmpVec = new Vec3(); var tmpQuat = new Quaternion(); /** * Add a shape to the body with a local offset and orientation. * @method addShape * @param {Shape} shape * @param {Vec3} [_offset] * @param {Quaternion} [_orientation] * @return {Body} The body object, for chainability. */ Body.prototype.addShape = function(shape, _offset, _orientation){ var offset = new Vec3(); var orientation = new Quaternion(); if(_offset){ offset.copy(_offset); } if(_orientation){ orientation.copy(_orientation); } this.shapes.push(shape); this.shapeOffsets.push(offset); this.shapeOrientations.push(orientation); this.updateMassProperties(); this.updateBoundingRadius(); this.aabbNeedsUpdate = true; shape.body = this; return this; }; /** * Update the bounding radius of the body. Should be done if any of the shapes are changed. * @method updateBoundingRadius */ Body.prototype.updateBoundingRadius = function(){ var shapes = this.shapes, shapeOffsets = this.shapeOffsets, N = shapes.length, radius = 0; for(var i=0; i!==N; i++){ var shape = shapes[i]; shape.updateBoundingSphereRadius(); var offset = shapeOffsets[i].norm(), r = shape.boundingSphereRadius; if(offset + r > radius){ radius = offset + r; } } this.boundingRadius = radius; }; var computeAABB_shapeAABB = new AABB(); /** * Updates the .aabb * @method computeAABB * @todo rename to updateAABB() */ Body.prototype.computeAABB = function(){ var shapes = this.shapes, shapeOffsets = this.shapeOffsets, shapeOrientations = this.shapeOrientations, N = shapes.length, offset = tmpVec, orientation = tmpQuat, bodyQuat = this.quaternion, aabb = this.aabb, shapeAABB = computeAABB_shapeAABB; for(var i=0; i!==N; i++){ var shape = shapes[i]; // Get shape world position bodyQuat.vmult(shapeOffsets[i], offset); offset.vadd(this.position, offset); // Get shape world quaternion shapeOrientations[i].mult(bodyQuat, orientation); // Get shape AABB shape.calculateWorldAABB(offset, orientation, shapeAABB.lowerBound, shapeAABB.upperBound); if(i === 0){ aabb.copy(shapeAABB); } else { aabb.extend(shapeAABB); } } this.aabbNeedsUpdate = false; }; var uiw_m1 = new Mat3(), uiw_m2 = new Mat3(), uiw_m3 = new Mat3(); /** * Update .inertiaWorld and .invInertiaWorld * @method updateInertiaWorld */ Body.prototype.updateInertiaWorld = function(force){ var I = this.invInertia; if (I.x === I.y && I.y === I.z && !force) { // If inertia M = s*I, where I is identity and s a scalar, then // R*M*R' = R*(s*I)*R' = s*R*I*R' = s*R*R' = s*I = M // where R is the rotation matrix. // In other words, we don't have to transform the inertia if all // inertia diagonal entries are equal. } else { var m1 = uiw_m1, m2 = uiw_m2, m3 = uiw_m3; m1.setRotationFromQuaternion(this.quaternion); m1.transpose(m2); m1.scale(I,m1); m1.mmult(m2,this.invInertiaWorld); } }; /** * Apply force to a world point. This could for example be a point on the Body surface. Applying force this way will add to Body.force and Body.torque. * @method applyForce * @param {Vec3} force The amount of force to add. * @param {Vec3} relativePoint A point relative to the center of mass to apply the force on. */ var Body_applyForce_r = new Vec3(); var Body_applyForce_rotForce = new Vec3(); Body.prototype.applyForce = function(force,relativePoint){ if(this.type !== Body.DYNAMIC){ // Needed? return; } // Compute produced rotational force var rotForce = Body_applyForce_rotForce; relativePoint.cross(force,rotForce); // Add linear force this.force.vadd(force,this.force); // Add rotational force this.torque.vadd(rotForce,this.torque); }; /** * Apply force to a local point in the body. * @method applyLocalForce * @param {Vec3} force The force vector to apply, defined locally in the body frame. * @param {Vec3} localPoint A local point in the body to apply the force on. */ var Body_applyLocalForce_worldForce = new Vec3(); var Body_applyLocalForce_relativePointWorld = new Vec3(); Body.prototype.applyLocalForce = function(localForce, localPoint){ if(this.type !== Body.DYNAMIC){ return; } var worldForce = Body_applyLocalForce_worldForce; var relativePointWorld = Body_applyLocalForce_relativePointWorld; // Transform the force vector to world space this.vectorToWorldFrame(localForce, worldForce); this.vectorToWorldFrame(localPoint, relativePointWorld); this.applyForce(worldForce, relativePointWorld); }; /** * Apply impulse to a world point. This could for example be a point on the Body surface. An impulse is a force added to a body during a short period of time (impulse = force * time). Impulses will be added to Body.velocity and Body.angularVelocity. * @method applyImpulse * @param {Vec3} impulse The amount of impulse to add. * @param {Vec3} relativePoint A point relative to the center of mass to apply the force on. */ var Body_applyImpulse_r = new Vec3(); var Body_applyImpulse_velo = new Vec3(); var Body_applyImpulse_rotVelo = new Vec3(); Body.prototype.applyImpulse = function(impulse, relativePoint){ if(this.type !== Body.DYNAMIC){ return; } // Compute point position relative to the body center var r = relativePoint; // Compute produced central impulse velocity var velo = Body_applyImpulse_velo; velo.copy(impulse); velo.mult(this.invMass,velo); // Add linear impulse this.velocity.vadd(velo, this.velocity); // Compute produced rotational impulse velocity var rotVelo = Body_applyImpulse_rotVelo; r.cross(impulse,rotVelo); /* rotVelo.x *= this.invInertia.x; rotVelo.y *= this.invInertia.y; rotVelo.z *= this.invInertia.z; */ this.invInertiaWorld.vmult(rotVelo,rotVelo); // Add rotational Impulse this.angularVelocity.vadd(rotVelo, this.angularVelocity); }; /** * Apply locally-defined impulse to a local point in the body. * @method applyLocalImpulse * @param {Vec3} force The force vector to apply, defined locally in the body frame. * @param {Vec3} localPoint A local point in the body to apply the force on. */ var Body_applyLocalImpulse_worldImpulse = new Vec3(); var Body_applyLocalImpulse_relativePoint = new Vec3(); Body.prototype.applyLocalImpulse = function(localImpulse, localPoint){ if(this.type !== Body.DYNAMIC){ return; } var worldImpulse = Body_applyLocalImpulse_worldImpulse; var relativePointWorld = Body_applyLocalImpulse_relativePoint; // Transform the force vector to world space this.vectorToWorldFrame(localImpulse, worldImpulse); this.vectorToWorldFrame(localPoint, relativePointWorld); this.applyImpulse(worldImpulse, relativePointWorld); }; var Body_updateMassProperties_halfExtents = new Vec3(); /** * Should be called whenever you change the body shape or mass. * @method updateMassProperties */ Body.prototype.updateMassProperties = function(){ var halfExtents = Body_updateMassProperties_halfExtents; this.invMass = this.mass > 0 ? 1.0 / this.mass : 0; var I = this.inertia; var fixed = this.fixedRotation; // Approximate with AABB box this.computeAABB(); halfExtents.set( (this.aabb.upperBound.x-this.aabb.lowerBound.x) / 2, (this.aabb.upperBound.y-this.aabb.lowerBound.y) / 2, (this.aabb.upperBound.z-this.aabb.lowerBound.z) / 2 ); Box.calculateInertia(halfExtents, this.mass, I); this.invInertia.set( I.x > 0 && !fixed ? 1.0 / I.x : 0, I.y > 0 && !fixed ? 1.0 / I.y : 0, I.z > 0 && !fixed ? 1.0 / I.z : 0 ); this.updateInertiaWorld(true); }; /** * Get world velocity of a point in the body. * @method getVelocityAtWorldPoint * @param {Vec3} worldPoint * @param {Vec3} result * @return {Vec3} The result vector. */ Body.prototype.getVelocityAtWorldPoint = function(worldPoint, result){ var r = new Vec3(); worldPoint.vsub(this.position, r); this.angularVelocity.cross(r, result); this.velocity.vadd(result, result); return result; }; var torque = new Vec3(); var invI_tau_dt = new Vec3(); var w = new Quaternion(); var wq = new Quaternion(); /** * Move the body forward in time. * @param {number} dt Time step * @param {boolean} quatNormalize Set to true to normalize the body quaternion * @param {boolean} quatNormalizeFast If the quaternion should be normalized using "fast" quaternion normalization */ Body.prototype.integrate = function(dt, quatNormalize, quatNormalizeFast){ // Save previous position this.previousPosition.copy(this.position); this.previousQuaternion.copy(this.quaternion); if(!(this.type === Body.DYNAMIC || this.type === Body.KINEMATIC) || this.sleepState === Body.SLEEPING){ // Only for dynamic return; } var velo = this.velocity, angularVelo = this.angularVelocity, pos = this.position, force = this.force, torque = this.torque, quat = this.quaternion, invMass = this.invMass, invInertia = this.invInertiaWorld, linearFactor = this.linearFactor; var iMdt = invMass * dt; velo.x += force.x * iMdt * linearFactor.x; velo.y += force.y * iMdt * linearFactor.y; velo.z += force.z * iMdt * linearFactor.z; var e = invInertia.elements; var angularFactor = this.angularFactor; var tx = torque.x * angularFactor.x; var ty = torque.y * angularFactor.y; var tz = torque.z * angularFactor.z; angularVelo.x += dt * (e[0] * tx + e[1] * ty + e[2] * tz); angularVelo.y += dt * (e[3] * tx + e[4] * ty + e[5] * tz); angularVelo.z += dt * (e[6] * tx + e[7] * ty + e[8] * tz); // Use new velocity - leap frog pos.x += velo.x * dt; pos.y += velo.y * dt; pos.z += velo.z * dt; quat.integrate(this.angularVelocity, dt, this.angularFactor, quat); if(quatNormalize){ if(quatNormalizeFast){ quat.normalizeFast(); } else { quat.normalize(); } } this.aabbNeedsUpdate = true; // Update world inertia this.updateInertiaWorld(); }; },{"../collision/AABB":24,"../material/Material":47,"../math/Mat3":49,"../math/Quaternion":50,"../math/Vec3":52,"../shapes/Box":59,"../shapes/Shape":65,"../utils/EventTarget":71}],54:[function(require,module,exports){ var Body = require('./Body'); var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var RaycastResult = require('../collision/RaycastResult'); var Ray = require('../collision/Ray'); var WheelInfo = require('../objects/WheelInfo'); module.exports = RaycastVehicle; /** * Vehicle helper class that casts rays from the wheel positions towards the ground and applies forces. * @class RaycastVehicle * @constructor * @param {object} [options] * @param {Body} [options.chassisBody] The car chassis body. * @param {integer} [options.indexRightAxis] Axis to use for right. x=0, y=1, z=2 * @param {integer} [options.indexLeftAxis] * @param {integer} [options.indexUpAxis] */ function RaycastVehicle(options){ /** * @property {Body} chassisBody */ this.chassisBody = options.chassisBody; /** * An array of WheelInfo objects. * @property {array} wheelInfos */ this.wheelInfos = []; /** * Will be set to true if the car is sliding. * @property {boolean} sliding */ this.sliding = false; /** * @property {World} world */ this.world = null; /** * Index of the right axis, 0=x, 1=y, 2=z * @property {integer} indexRightAxis * @default 1 */ this.indexRightAxis = typeof(options.indexRightAxis) !== 'undefined' ? options.indexRightAxis : 1; /** * Index of the forward axis, 0=x, 1=y, 2=z * @property {integer} indexForwardAxis * @default 0 */ this.indexForwardAxis = typeof(options.indexForwardAxis) !== 'undefined' ? options.indexForwardAxis : 0; /** * Index of the up axis, 0=x, 1=y, 2=z * @property {integer} indexUpAxis * @default 2 */ this.indexUpAxis = typeof(options.indexUpAxis) !== 'undefined' ? options.indexUpAxis : 2; } var tmpVec1 = new Vec3(); var tmpVec2 = new Vec3(); var tmpVec3 = new Vec3(); var tmpVec4 = new Vec3(); var tmpVec5 = new Vec3(); var tmpVec6 = new Vec3(); var tmpRay = new Ray(); /** * Add a wheel. For information about the options, see WheelInfo. * @method addWheel * @param {object} [options] */ RaycastVehicle.prototype.addWheel = function(options){ options = options || {}; var info = new WheelInfo(options); var index = this.wheelInfos.length; this.wheelInfos.push(info); return index; }; /** * Set the steering value of a wheel. * @method setSteeringValue * @param {number} value * @param {integer} wheelIndex */ RaycastVehicle.prototype.setSteeringValue = function(value, wheelIndex){ var wheel = this.wheelInfos[wheelIndex]; wheel.steering = value; }; var torque = new Vec3(); /** * Set the wheel force to apply on one of the wheels each time step * @method applyEngineForce * @param {number} value * @param {integer} wheelIndex */ RaycastVehicle.prototype.applyEngineForce = function(value, wheelIndex){ this.wheelInfos[wheelIndex].engineForce = value; }; /** * Set the braking force of a wheel * @method setBrake * @param {number} brake * @param {integer} wheelIndex */ RaycastVehicle.prototype.setBrake = function(brake, wheelIndex){ this.wheelInfos[wheelIndex].brake = brake; }; /** * Add the vehicle including its constraints to the world. * @method addToWorld * @param {World} world */ RaycastVehicle.prototype.addToWorld = function(world){ var constraints = this.constraints; world.addBody(this.chassisBody); var that = this; this.preStepCallback = function(){ that.updateVehicle(world.dt); }; world.addEventListener('preStep', this.preStepCallback); this.world = world; }; /** * Get one of the wheel axles, world-oriented. * @private * @method getVehicleAxisWorld * @param {integer} axisIndex * @param {Vec3} result */ RaycastVehicle.prototype.getVehicleAxisWorld = function(axisIndex, result){ result.set( axisIndex === 0 ? 1 : 0, axisIndex === 1 ? 1 : 0, axisIndex === 2 ? 1 : 0 ); this.chassisBody.vectorToWorldFrame(result, result); }; RaycastVehicle.prototype.updateVehicle = function(timeStep){ var wheelInfos = this.wheelInfos; var numWheels = wheelInfos.length; var chassisBody = this.chassisBody; for (var i = 0; i < numWheels; i++) { this.updateWheelTransform(i); } this.currentVehicleSpeedKmHour = 3.6 * chassisBody.velocity.norm(); var forwardWorld = new Vec3(); this.getVehicleAxisWorld(this.indexForwardAxis, forwardWorld); if (forwardWorld.dot(chassisBody.velocity) < 0){ this.currentVehicleSpeedKmHour *= -1; } // simulate suspension for (var i = 0; i < numWheels; i++) { this.castRay(wheelInfos[i]); } this.updateSuspension(timeStep); var impulse = new Vec3(); var relpos = new Vec3(); for (var i = 0; i < numWheels; i++) { //apply suspension force var wheel = wheelInfos[i]; var suspensionForce = wheel.suspensionForce; if (suspensionForce > wheel.maxSuspensionForce) { suspensionForce = wheel.maxSuspensionForce; } wheel.raycastResult.hitNormalWorld.scale(suspensionForce * timeStep, impulse); wheel.raycastResult.hitPointWorld.vsub(chassisBody.position, relpos); chassisBody.applyImpulse(impulse, relpos); } this.updateFriction(timeStep); var hitNormalWorldScaledWithProj = new Vec3(); var fwd = new Vec3(); var vel = new Vec3(); for (i = 0; i < numWheels; i++) { var wheel = wheelInfos[i]; //var relpos = new Vec3(); //wheel.chassisConnectionPointWorld.vsub(chassisBody.position, relpos); chassisBody.getVelocityAtWorldPoint(wheel.chassisConnectionPointWorld, vel); // Hack to get the rotation in the correct direction var m = 1; switch(this.indexUpAxis){ case 1: m = -1; break; } if (wheel.isInContact) { this.getVehicleAxisWorld(this.indexForwardAxis, fwd); var proj = fwd.dot(wheel.raycastResult.hitNormalWorld); wheel.raycastResult.hitNormalWorld.scale(proj, hitNormalWorldScaledWithProj); fwd.vsub(hitNormalWorldScaledWithProj, fwd); var proj2 = fwd.dot(vel); wheel.deltaRotation = m * proj2 * timeStep / wheel.radius; } if((wheel.sliding || !wheel.isInContact) && wheel.engineForce !== 0 && wheel.useCustomSlidingRotationalSpeed){ // Apply custom rotation when accelerating and sliding wheel.deltaRotation = (wheel.engineForce > 0 ? 1 : -1) * wheel.customSlidingRotationalSpeed * timeStep; } // Lock wheels if(Math.abs(wheel.brake) > Math.abs(wheel.engineForce)){ wheel.deltaRotation = 0; } wheel.rotation += wheel.deltaRotation; // Use the old value wheel.deltaRotation *= 0.99; // damping of rotation when not in contact } }; RaycastVehicle.prototype.updateSuspension = function(deltaTime) { var chassisBody = this.chassisBody; var chassisMass = chassisBody.mass; var wheelInfos = this.wheelInfos; var numWheels = wheelInfos.length; for (var w_it = 0; w_it < numWheels; w_it++){ var wheel = wheelInfos[w_it]; if (wheel.isInContact){ var force; // Spring var susp_length = wheel.suspensionRestLength; var current_length = wheel.suspensionLength; var length_diff = (susp_length - current_length); force = wheel.suspensionStiffness * length_diff * wheel.clippedInvContactDotSuspension; // Damper var projected_rel_vel = wheel.suspensionRelativeVelocity; var susp_damping; if (projected_rel_vel < 0) { susp_damping = wheel.dampingCompression; } else { susp_damping = wheel.dampingRelaxation; } force -= susp_damping * projected_rel_vel; wheel.suspensionForce = force * chassisMass; if (wheel.suspensionForce < 0) { wheel.suspensionForce = 0; } } else { wheel.suspensionForce = 0; } } }; /** * Remove the vehicle including its constraints from the world. * @method removeFromWorld * @param {World} world */ RaycastVehicle.prototype.removeFromWorld = function(world){ var constraints = this.constraints; world.remove(this.chassisBody); world.removeEventListener('preStep', this.preStepCallback); this.world = null; }; var castRay_rayvector = new Vec3(); var castRay_target = new Vec3(); RaycastVehicle.prototype.castRay = function(wheel) { var rayvector = castRay_rayvector; var target = castRay_target; this.updateWheelTransformWorld(wheel); var chassisBody = this.chassisBody; var depth = -1; var raylen = wheel.suspensionRestLength + wheel.radius; wheel.directionWorld.scale(raylen, rayvector); var source = wheel.chassisConnectionPointWorld; source.vadd(rayvector, target); var raycastResult = wheel.raycastResult; var param = 0; raycastResult.reset(); // Turn off ray collision with the chassis temporarily var oldState = chassisBody.collisionResponse; chassisBody.collisionResponse = false; // Cast ray against world this.world.rayTest(source, target, raycastResult); chassisBody.collisionResponse = oldState; var object = raycastResult.body; wheel.raycastResult.groundObject = 0; if (object) { depth = raycastResult.distance; wheel.raycastResult.hitNormalWorld = raycastResult.hitNormalWorld; wheel.isInContact = true; var hitDistance = raycastResult.distance; wheel.suspensionLength = hitDistance - wheel.radius; // clamp on max suspension travel var minSuspensionLength = wheel.suspensionRestLength - wheel.maxSuspensionTravel; var maxSuspensionLength = wheel.suspensionRestLength + wheel.maxSuspensionTravel; if (wheel.suspensionLength < minSuspensionLength) { wheel.suspensionLength = minSuspensionLength; } if (wheel.suspensionLength > maxSuspensionLength) { wheel.suspensionLength = maxSuspensionLength; wheel.raycastResult.reset(); } var denominator = wheel.raycastResult.hitNormalWorld.dot(wheel.directionWorld); var chassis_velocity_at_contactPoint = new Vec3(); chassisBody.getVelocityAtWorldPoint(wheel.raycastResult.hitPointWorld, chassis_velocity_at_contactPoint); var projVel = wheel.raycastResult.hitNormalWorld.dot( chassis_velocity_at_contactPoint ); if (denominator >= -0.1) { wheel.suspensionRelativeVelocity = 0; wheel.clippedInvContactDotSuspension = 1 / 0.1; } else { var inv = -1 / denominator; wheel.suspensionRelativeVelocity = projVel * inv; wheel.clippedInvContactDotSuspension = inv; } } else { //put wheel info as in rest position wheel.suspensionLength = wheel.suspensionRestLength + 0 * wheel.maxSuspensionTravel; wheel.suspensionRelativeVelocity = 0.0; wheel.directionWorld.scale(-1, wheel.raycastResult.hitNormalWorld); wheel.clippedInvContactDotSuspension = 1.0; } return depth; }; RaycastVehicle.prototype.updateWheelTransformWorld = function(wheel){ wheel.isInContact = false; var chassisBody = this.chassisBody; chassisBody.pointToWorldFrame(wheel.chassisConnectionPointLocal, wheel.chassisConnectionPointWorld); chassisBody.vectorToWorldFrame(wheel.directionLocal, wheel.directionWorld); chassisBody.vectorToWorldFrame(wheel.axleLocal, wheel.axleWorld); }; /** * Update one of the wheel transform. * Note when rendering wheels: during each step, wheel transforms are updated BEFORE the chassis; ie. their position becomes invalid after the step. Thus when you render wheels, you must update wheel transforms before rendering them. See raycastVehicle demo for an example. * @method updateWheelTransform * @param {integer} wheelIndex The wheel index to update. */ RaycastVehicle.prototype.updateWheelTransform = function(wheelIndex){ var up = tmpVec4; var right = tmpVec5; var fwd = tmpVec6; var wheel = this.wheelInfos[wheelIndex]; this.updateWheelTransformWorld(wheel); wheel.directionLocal.scale(-1, up); right.copy(wheel.axleLocal); up.cross(right, fwd); fwd.normalize(); right.normalize(); // Rotate around steering over the wheelAxle var steering = wheel.steering; var steeringOrn = new Quaternion(); steeringOrn.setFromAxisAngle(up, steering); var rotatingOrn = new Quaternion(); rotatingOrn.setFromAxisAngle(right, wheel.rotation); // World rotation of the wheel var q = wheel.worldTransform.quaternion; this.chassisBody.quaternion.mult(steeringOrn, q); q.mult(rotatingOrn, q); q.normalize(); // world position of the wheel var p = wheel.worldTransform.position; p.copy(wheel.directionWorld); p.scale(wheel.suspensionLength, p); p.vadd(wheel.chassisConnectionPointWorld, p); }; var directions = [ new Vec3(1, 0, 0), new Vec3(0, 1, 0), new Vec3(0, 0, 1) ]; /** * Get the world transform of one of the wheels * @method getWheelTransformWorld * @param {integer} wheelIndex * @return {Transform} */ RaycastVehicle.prototype.getWheelTransformWorld = function(wheelIndex) { return this.wheelInfos[wheelIndex].worldTransform; }; var updateFriction_surfNormalWS_scaled_proj = new Vec3(); var updateFriction_axle = []; var updateFriction_forwardWS = []; var sideFrictionStiffness2 = 1; RaycastVehicle.prototype.updateFriction = function(timeStep) { var surfNormalWS_scaled_proj = updateFriction_surfNormalWS_scaled_proj; //calculate the impulse, so that the wheels don't move sidewards var wheelInfos = this.wheelInfos; var numWheels = wheelInfos.length; var chassisBody = this.chassisBody; var forwardWS = updateFriction_forwardWS; var axle = updateFriction_axle; var numWheelsOnGround = 0; for (var i = 0; i < numWheels; i++) { var wheel = wheelInfos[i]; var groundObject = wheel.raycastResult.body; if (groundObject){ numWheelsOnGround++; } wheel.sideImpulse = 0; wheel.forwardImpulse = 0; if(!forwardWS[i]){ forwardWS[i] = new Vec3(); } if(!axle[i]){ axle[i] = new Vec3(); } } for (var i = 0; i < numWheels; i++){ var wheel = wheelInfos[i]; var groundObject = wheel.raycastResult.body; if (groundObject) { var axlei = axle[i]; var wheelTrans = this.getWheelTransformWorld(i); // Get world axle wheelTrans.vectorToWorldFrame(directions[this.indexRightAxis], axlei); var surfNormalWS = wheel.raycastResult.hitNormalWorld; var proj = axlei.dot(surfNormalWS); surfNormalWS.scale(proj, surfNormalWS_scaled_proj); axlei.vsub(surfNormalWS_scaled_proj, axlei); axlei.normalize(); surfNormalWS.cross(axlei, forwardWS[i]); forwardWS[i].normalize(); wheel.sideImpulse = resolveSingleBilateral( chassisBody, wheel.raycastResult.hitPointWorld, groundObject, wheel.raycastResult.hitPointWorld, axlei ); wheel.sideImpulse *= sideFrictionStiffness2; } } var sideFactor = 1; var fwdFactor = 0.5; this.sliding = false; for (var i = 0; i < numWheels; i++) { var wheel = wheelInfos[i]; var groundObject = wheel.raycastResult.body; var rollingFriction = 0; wheel.slipInfo = 1; if (groundObject) { var defaultRollingFrictionImpulse = 0; var maxImpulse = wheel.brake ? wheel.brake : defaultRollingFrictionImpulse; // btWheelContactPoint contactPt(chassisBody,groundObject,wheelInfraycastInfo.hitPointWorld,forwardWS[wheel],maxImpulse); // rollingFriction = calcRollingFriction(contactPt); rollingFriction = calcRollingFriction(chassisBody, groundObject, wheel.raycastResult.hitPointWorld, forwardWS[i], maxImpulse); rollingFriction += wheel.engineForce * timeStep; // rollingFriction = 0; var factor = maxImpulse / rollingFriction; wheel.slipInfo *= factor; } //switch between active rolling (throttle), braking and non-active rolling friction (nthrottle/break) wheel.forwardImpulse = 0; wheel.skidInfo = 1; if (groundObject) { wheel.skidInfo = 1; var maximp = wheel.suspensionForce * timeStep * wheel.frictionSlip; var maximpSide = maximp; var maximpSquared = maximp * maximpSide; wheel.forwardImpulse = rollingFriction;//wheelInfo.engineForce* timeStep; var x = wheel.forwardImpulse * fwdFactor; var y = wheel.sideImpulse * sideFactor; var impulseSquared = x * x + y * y; wheel.sliding = false; if (impulseSquared > maximpSquared) { this.sliding = true; wheel.sliding = true; var factor = maximp / Math.sqrt(impulseSquared); wheel.skidInfo *= factor; } } } if (this.sliding) { for (var i = 0; i < numWheels; i++) { var wheel = wheelInfos[i]; if (wheel.sideImpulse !== 0) { if (wheel.skidInfo < 1){ wheel.forwardImpulse *= wheel.skidInfo; wheel.sideImpulse *= wheel.skidInfo; } } } } // apply the impulses for (var i = 0; i < numWheels; i++) { var wheel = wheelInfos[i]; var rel_pos = new Vec3(); wheel.raycastResult.hitPointWorld.vsub(chassisBody.position, rel_pos); // cannons applyimpulse is using world coord for the position //rel_pos.copy(wheel.raycastResult.hitPointWorld); if (wheel.forwardImpulse !== 0) { var impulse = new Vec3(); forwardWS[i].scale(wheel.forwardImpulse, impulse); chassisBody.applyImpulse(impulse, rel_pos); } if (wheel.sideImpulse !== 0){ var groundObject = wheel.raycastResult.body; var rel_pos2 = new Vec3(); wheel.raycastResult.hitPointWorld.vsub(groundObject.position, rel_pos2); //rel_pos2.copy(wheel.raycastResult.hitPointWorld); var sideImp = new Vec3(); axle[i].scale(wheel.sideImpulse, sideImp); // Scale the relative position in the up direction with rollInfluence. // If rollInfluence is 1, the impulse will be applied on the hitPoint (easy to roll over), if it is zero it will be applied in the same plane as the center of mass (not easy to roll over). chassisBody.vectorToLocalFrame(rel_pos, rel_pos); rel_pos['xyz'[this.indexUpAxis]] *= wheel.rollInfluence; chassisBody.vectorToWorldFrame(rel_pos, rel_pos); chassisBody.applyImpulse(sideImp, rel_pos); //apply friction impulse on the ground sideImp.scale(-1, sideImp); groundObject.applyImpulse(sideImp, rel_pos2); } } }; var calcRollingFriction_vel1 = new Vec3(); var calcRollingFriction_vel2 = new Vec3(); var calcRollingFriction_vel = new Vec3(); function calcRollingFriction(body0, body1, frictionPosWorld, frictionDirectionWorld, maxImpulse) { var j1 = 0; var contactPosWorld = frictionPosWorld; // var rel_pos1 = new Vec3(); // var rel_pos2 = new Vec3(); var vel1 = calcRollingFriction_vel1; var vel2 = calcRollingFriction_vel2; var vel = calcRollingFriction_vel; // contactPosWorld.vsub(body0.position, rel_pos1); // contactPosWorld.vsub(body1.position, rel_pos2); body0.getVelocityAtWorldPoint(contactPosWorld, vel1); body1.getVelocityAtWorldPoint(contactPosWorld, vel2); vel1.vsub(vel2, vel); var vrel = frictionDirectionWorld.dot(vel); var denom0 = computeImpulseDenominator(body0, frictionPosWorld, frictionDirectionWorld); var denom1 = computeImpulseDenominator(body1, frictionPosWorld, frictionDirectionWorld); var relaxation = 1; var jacDiagABInv = relaxation / (denom0 + denom1); // calculate j that moves us to zero relative velocity j1 = -vrel * jacDiagABInv; if (maxImpulse < j1) { j1 = maxImpulse; } if (j1 < -maxImpulse) { j1 = -maxImpulse; } return j1; } var computeImpulseDenominator_r0 = new Vec3(); var computeImpulseDenominator_c0 = new Vec3(); var computeImpulseDenominator_vec = new Vec3(); var computeImpulseDenominator_m = new Vec3(); function computeImpulseDenominator(body, pos, normal) { var r0 = computeImpulseDenominator_r0; var c0 = computeImpulseDenominator_c0; var vec = computeImpulseDenominator_vec; var m = computeImpulseDenominator_m; pos.vsub(body.position, r0); r0.cross(normal, c0); body.invInertiaWorld.vmult(c0, m); m.cross(r0, vec); return body.invMass + normal.dot(vec); } var resolveSingleBilateral_vel1 = new Vec3(); var resolveSingleBilateral_vel2 = new Vec3(); var resolveSingleBilateral_vel = new Vec3(); //bilateral constraint between two dynamic objects function resolveSingleBilateral(body1, pos1, body2, pos2, normal, impulse){ var normalLenSqr = normal.norm2(); if (normalLenSqr > 1.1){ return 0; // no impulse } // var rel_pos1 = new Vec3(); // var rel_pos2 = new Vec3(); // pos1.vsub(body1.position, rel_pos1); // pos2.vsub(body2.position, rel_pos2); var vel1 = resolveSingleBilateral_vel1; var vel2 = resolveSingleBilateral_vel2; var vel = resolveSingleBilateral_vel; body1.getVelocityAtWorldPoint(pos1, vel1); body2.getVelocityAtWorldPoint(pos2, vel2); vel1.vsub(vel2, vel); var rel_vel = normal.dot(vel); var contactDamping = 0.2; var massTerm = 1 / (body1.invMass + body2.invMass); var impulse = - contactDamping * rel_vel * massTerm; return impulse; } },{"../collision/Ray":31,"../collision/RaycastResult":32,"../math/Quaternion":50,"../math/Vec3":52,"../objects/WheelInfo":58,"./Body":53}],55:[function(require,module,exports){ var Body = require('./Body'); var Sphere = require('../shapes/Sphere'); var Box = require('../shapes/Box'); var Vec3 = require('../math/Vec3'); var HingeConstraint = require('../constraints/HingeConstraint'); module.exports = RigidVehicle; /** * Simple vehicle helper class with spherical rigid body wheels. * @class RigidVehicle * @constructor * @param {Body} [options.chassisBody] */ function RigidVehicle(options){ this.wheelBodies = []; /** * @property coordinateSystem * @type {Vec3} */ this.coordinateSystem = typeof(options.coordinateSystem)==='undefined' ? new Vec3(1, 2, 3) : options.coordinateSystem.clone(); /** * @property {Body} chassisBody */ this.chassisBody = options.chassisBody; if(!this.chassisBody){ // No chassis body given. Create it! var chassisShape = new Box(new Vec3(5, 2, 0.5)); this.chassisBody = new Body(1, chassisShape); } /** * @property constraints * @type {Array} */ this.constraints = []; this.wheelAxes = []; this.wheelForces = []; } /** * Add a wheel * @method addWheel * @param {object} options * @param {boolean} [options.isFrontWheel] * @param {Vec3} [options.position] Position of the wheel, locally in the chassis body. * @param {Vec3} [options.direction] Slide direction of the wheel along the suspension. * @param {Vec3} [options.axis] Axis of rotation of the wheel, locally defined in the chassis. * @param {Body} [options.body] The wheel body. */ RigidVehicle.prototype.addWheel = function(options){ options = options || {}; var wheelBody = options.body; if(!wheelBody){ wheelBody = new Body(1, new Sphere(1.2)); } this.wheelBodies.push(wheelBody); this.wheelForces.push(0); // Position constrain wheels var zero = new Vec3(); var position = typeof(options.position) !== 'undefined' ? options.position.clone() : new Vec3(); // Set position locally to the chassis var worldPosition = new Vec3(); this.chassisBody.pointToWorldFrame(position, worldPosition); wheelBody.position.set(worldPosition.x, worldPosition.y, worldPosition.z); // Constrain wheel var axis = typeof(options.axis) !== 'undefined' ? options.axis.clone() : new Vec3(0, 1, 0); this.wheelAxes.push(axis); var hingeConstraint = new HingeConstraint(this.chassisBody, wheelBody, { pivotA: position, axisA: axis, pivotB: Vec3.ZERO, axisB: axis, collideConnected: false }); this.constraints.push(hingeConstraint); return this.wheelBodies.length - 1; }; /** * Set the steering value of a wheel. * @method setSteeringValue * @param {number} value * @param {integer} wheelIndex * @todo check coordinateSystem */ RigidVehicle.prototype.setSteeringValue = function(value, wheelIndex){ // Set angle of the hinge axis var axis = this.wheelAxes[wheelIndex]; var c = Math.cos(value), s = Math.sin(value), x = axis.x, y = axis.y; this.constraints[wheelIndex].axisA.set( c*x -s*y, s*x +c*y, 0 ); }; /** * Set the target rotational speed of the hinge constraint. * @method setMotorSpeed * @param {number} value * @param {integer} wheelIndex */ RigidVehicle.prototype.setMotorSpeed = function(value, wheelIndex){ var hingeConstraint = this.constraints[wheelIndex]; hingeConstraint.enableMotor(); hingeConstraint.motorTargetVelocity = value; }; /** * Set the target rotational speed of the hinge constraint. * @method disableMotor * @param {number} value * @param {integer} wheelIndex */ RigidVehicle.prototype.disableMotor = function(wheelIndex){ var hingeConstraint = this.constraints[wheelIndex]; hingeConstraint.disableMotor(); }; var torque = new Vec3(); /** * Set the wheel force to apply on one of the wheels each time step * @method setWheelForce * @param {number} value * @param {integer} wheelIndex */ RigidVehicle.prototype.setWheelForce = function(value, wheelIndex){ this.wheelForces[wheelIndex] = value; }; /** * Apply a torque on one of the wheels. * @method applyWheelForce * @param {number} value * @param {integer} wheelIndex */ RigidVehicle.prototype.applyWheelForce = function(value, wheelIndex){ var axis = this.wheelAxes[wheelIndex]; var wheelBody = this.wheelBodies[wheelIndex]; var bodyTorque = wheelBody.torque; axis.scale(value, torque); wheelBody.vectorToWorldFrame(torque, torque); bodyTorque.vadd(torque, bodyTorque); }; /** * Add the vehicle including its constraints to the world. * @method addToWorld * @param {World} world */ RigidVehicle.prototype.addToWorld = function(world){ var constraints = this.constraints; var bodies = this.wheelBodies.concat([this.chassisBody]); for (var i = 0; i < bodies.length; i++) { world.addBody(bodies[i]); } for (var i = 0; i < constraints.length; i++) { world.addConstraint(constraints[i]); } world.addEventListener('preStep', this._update.bind(this)); }; RigidVehicle.prototype._update = function(){ var wheelForces = this.wheelForces; for (var i = 0; i < wheelForces.length; i++) { this.applyWheelForce(wheelForces[i], i); } }; /** * Remove the vehicle including its constraints from the world. * @method removeFromWorld * @param {World} world */ RigidVehicle.prototype.removeFromWorld = function(world){ var constraints = this.constraints; var bodies = this.wheelBodies.concat([this.chassisBody]); for (var i = 0; i < bodies.length; i++) { world.remove(bodies[i]); } for (var i = 0; i < constraints.length; i++) { world.removeConstraint(constraints[i]); } }; var worldAxis = new Vec3(); /** * Get current rotational velocity of a wheel * @method getWheelSpeed * @param {integer} wheelIndex */ RigidVehicle.prototype.getWheelSpeed = function(wheelIndex){ var axis = this.wheelAxes[wheelIndex]; var wheelBody = this.wheelBodies[wheelIndex]; var w = wheelBody.angularVelocity; this.chassisBody.vectorToWorldFrame(axis, worldAxis); return w.dot(worldAxis); }; },{"../constraints/HingeConstraint":37,"../math/Vec3":52,"../shapes/Box":59,"../shapes/Sphere":66,"./Body":53}],56:[function(require,module,exports){ module.exports = SPHSystem; var Shape = require('../shapes/Shape'); var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var Particle = require('../shapes/Particle'); var Body = require('../objects/Body'); var Material = require('../material/Material'); /** * Smoothed-particle hydrodynamics system * @class SPHSystem * @constructor */ function SPHSystem(){ this.particles = []; /** * Density of the system (kg/m3). * @property {number} density */ this.density = 1; /** * Distance below which two particles are considered to be neighbors. * It should be adjusted so there are about 15-20 neighbor particles within this radius. * @property {number} smoothingRadius */ this.smoothingRadius = 1; this.speedOfSound = 1; /** * Viscosity of the system. * @property {number} viscosity */ this.viscosity = 0.01; this.eps = 0.000001; // Stuff Computed per particle this.pressures = []; this.densities = []; this.neighbors = []; } /** * Add a particle to the system. * @method add * @param {Body} particle */ SPHSystem.prototype.add = function(particle){ this.particles.push(particle); if(this.neighbors.length < this.particles.length){ this.neighbors.push([]); } }; /** * Remove a particle from the system. * @method remove * @param {Body} particle */ SPHSystem.prototype.remove = function(particle){ var idx = this.particles.indexOf(particle); if(idx !== -1){ this.particles.splice(idx,1); if(this.neighbors.length > this.particles.length){ this.neighbors.pop(); } } }; /** * Get neighbors within smoothing volume, save in the array neighbors * @method getNeighbors * @param {Body} particle * @param {Array} neighbors */ var SPHSystem_getNeighbors_dist = new Vec3(); SPHSystem.prototype.getNeighbors = function(particle,neighbors){ var N = this.particles.length, id = particle.id, R2 = this.smoothingRadius * this.smoothingRadius, dist = SPHSystem_getNeighbors_dist; for(var i=0; i!==N; i++){ var p = this.particles[i]; p.position.vsub(particle.position,dist); if(id!==p.id && dist.norm2() < R2){ neighbors.push(p); } } }; // Temp vectors for calculation var SPHSystem_update_dist = new Vec3(), SPHSystem_update_a_pressure = new Vec3(), SPHSystem_update_a_visc = new Vec3(), SPHSystem_update_gradW = new Vec3(), SPHSystem_update_r_vec = new Vec3(), SPHSystem_update_u = new Vec3(); // Relative velocity SPHSystem.prototype.update = function(){ var N = this.particles.length, dist = SPHSystem_update_dist, cs = this.speedOfSound, eps = this.eps; for(var i=0; i!==N; i++){ var p = this.particles[i]; // Current particle var neighbors = this.neighbors[i]; // Get neighbors neighbors.length = 0; this.getNeighbors(p,neighbors); neighbors.push(this.particles[i]); // Add current too var numNeighbors = neighbors.length; // Accumulate density for the particle var sum = 0.0; for(var j=0; j!==numNeighbors; j++){ //printf("Current particle has position %f %f %f\n",objects[id].pos.x(),objects[id].pos.y(),objects[id].pos.z()); p.position.vsub(neighbors[j].position, dist); var len = dist.norm(); var weight = this.w(len); sum += neighbors[j].mass * weight; } // Save this.densities[i] = sum; this.pressures[i] = cs * cs * (this.densities[i] - this.density); } // Add forces // Sum to these accelerations var a_pressure= SPHSystem_update_a_pressure; var a_visc = SPHSystem_update_a_visc; var gradW = SPHSystem_update_gradW; var r_vec = SPHSystem_update_r_vec; var u = SPHSystem_update_u; for(var i=0; i!==N; i++){ var particle = this.particles[i]; a_pressure.set(0,0,0); a_visc.set(0,0,0); // Init vars var Pij; var nabla; var Vij; // Sum up for all other neighbors var neighbors = this.neighbors[i]; var numNeighbors = neighbors.length; //printf("Neighbors: "); for(var j=0; j!==numNeighbors; j++){ var neighbor = neighbors[j]; //printf("%d ",nj); // Get r once for all.. particle.position.vsub(neighbor.position,r_vec); var r = r_vec.norm(); // Pressure contribution Pij = -neighbor.mass * (this.pressures[i] / (this.densities[i]*this.densities[i] + eps) + this.pressures[j] / (this.densities[j]*this.densities[j] + eps)); this.gradw(r_vec, gradW); // Add to pressure acceleration gradW.mult(Pij , gradW); a_pressure.vadd(gradW, a_pressure); // Viscosity contribution neighbor.velocity.vsub(particle.velocity, u); u.mult( 1.0 / (0.0001+this.densities[i] * this.densities[j]) * this.viscosity * neighbor.mass , u ); nabla = this.nablaw(r); u.mult(nabla,u); // Add to viscosity acceleration a_visc.vadd( u, a_visc ); } // Calculate force a_visc.mult(particle.mass, a_visc); a_pressure.mult(particle.mass, a_pressure); // Add force to particles particle.force.vadd(a_visc, particle.force); particle.force.vadd(a_pressure, particle.force); } }; // Calculate the weight using the W(r) weightfunction SPHSystem.prototype.w = function(r){ // 315 var h = this.smoothingRadius; return 315.0/(64.0*Math.PI*Math.pow(h,9)) * Math.pow(h*h-r*r,3); }; // calculate gradient of the weight function SPHSystem.prototype.gradw = function(rVec,resultVec){ var r = rVec.norm(), h = this.smoothingRadius; rVec.mult(945.0/(32.0*Math.PI*Math.pow(h,9)) * Math.pow((h*h-r*r),2) , resultVec); }; // Calculate nabla(W) SPHSystem.prototype.nablaw = function(r){ var h = this.smoothingRadius; var nabla = 945.0/(32.0*Math.PI*Math.pow(h,9)) * (h*h-r*r)*(7*r*r - 3*h*h); return nabla; }; },{"../material/Material":47,"../math/Quaternion":50,"../math/Vec3":52,"../objects/Body":53,"../shapes/Particle":63,"../shapes/Shape":65}],57:[function(require,module,exports){ var Vec3 = require('../math/Vec3'); module.exports = Spring; /** * A spring, connecting two bodies. * * @class Spring * @constructor * @param {Body} bodyA * @param {Body} bodyB * @param {Object} [options] * @param {number} [options.restLength] A number > 0. Default: 1 * @param {number} [options.stiffness] A number >= 0. Default: 100 * @param {number} [options.damping] A number >= 0. Default: 1 * @param {Vec3} [options.worldAnchorA] Where to hook the spring to body A, in world coordinates. * @param {Vec3} [options.worldAnchorB] * @param {Vec3} [options.localAnchorA] Where to hook the spring to body A, in local body coordinates. * @param {Vec3} [options.localAnchorB] */ function Spring(bodyA,bodyB,options){ options = options || {}; /** * Rest length of the spring. * @property restLength * @type {number} */ this.restLength = typeof(options.restLength) === "number" ? options.restLength : 1; /** * Stiffness of the spring. * @property stiffness * @type {number} */ this.stiffness = options.stiffness || 100; /** * Damping of the spring. * @property damping * @type {number} */ this.damping = options.damping || 1; /** * First connected body. * @property bodyA * @type {Body} */ this.bodyA = bodyA; /** * Second connected body. * @property bodyB * @type {Body} */ this.bodyB = bodyB; /** * Anchor for bodyA in local bodyA coordinates. * @property localAnchorA * @type {Vec3} */ this.localAnchorA = new Vec3(); /** * Anchor for bodyB in local bodyB coordinates. * @property localAnchorB * @type {Vec3} */ this.localAnchorB = new Vec3(); if(options.localAnchorA){ this.localAnchorA.copy(options.localAnchorA); } if(options.localAnchorB){ this.localAnchorB.copy(options.localAnchorB); } if(options.worldAnchorA){ this.setWorldAnchorA(options.worldAnchorA); } if(options.worldAnchorB){ this.setWorldAnchorB(options.worldAnchorB); } } /** * Set the anchor point on body A, using world coordinates. * @method setWorldAnchorA * @param {Vec3} worldAnchorA */ Spring.prototype.setWorldAnchorA = function(worldAnchorA){ this.bodyA.pointToLocalFrame(worldAnchorA,this.localAnchorA); }; /** * Set the anchor point on body B, using world coordinates. * @method setWorldAnchorB * @param {Vec3} worldAnchorB */ Spring.prototype.setWorldAnchorB = function(worldAnchorB){ this.bodyB.pointToLocalFrame(worldAnchorB,this.localAnchorB); }; /** * Get the anchor point on body A, in world coordinates. * @method getWorldAnchorA * @param {Vec3} result The vector to store the result in. */ Spring.prototype.getWorldAnchorA = function(result){ this.bodyA.pointToWorldFrame(this.localAnchorA,result); }; /** * Get the anchor point on body B, in world coordinates. * @method getWorldAnchorB * @param {Vec3} result The vector to store the result in. */ Spring.prototype.getWorldAnchorB = function(result){ this.bodyB.pointToWorldFrame(this.localAnchorB,result); }; var applyForce_r = new Vec3(), applyForce_r_unit = new Vec3(), applyForce_u = new Vec3(), applyForce_f = new Vec3(), applyForce_worldAnchorA = new Vec3(), applyForce_worldAnchorB = new Vec3(), applyForce_ri = new Vec3(), applyForce_rj = new Vec3(), applyForce_ri_x_f = new Vec3(), applyForce_rj_x_f = new Vec3(), applyForce_tmp = new Vec3(); /** * Apply the spring force to the connected bodies. * @method applyForce */ Spring.prototype.applyForce = function(){ var k = this.stiffness, d = this.damping, l = this.restLength, bodyA = this.bodyA, bodyB = this.bodyB, r = applyForce_r, r_unit = applyForce_r_unit, u = applyForce_u, f = applyForce_f, tmp = applyForce_tmp; var worldAnchorA = applyForce_worldAnchorA, worldAnchorB = applyForce_worldAnchorB, ri = applyForce_ri, rj = applyForce_rj, ri_x_f = applyForce_ri_x_f, rj_x_f = applyForce_rj_x_f; // Get world anchors this.getWorldAnchorA(worldAnchorA); this.getWorldAnchorB(worldAnchorB); // Get offset points worldAnchorA.vsub(bodyA.position,ri); worldAnchorB.vsub(bodyB.position,rj); // Compute distance vector between world anchor points worldAnchorB.vsub(worldAnchorA,r); var rlen = r.norm(); r_unit.copy(r); r_unit.normalize(); // Compute relative velocity of the anchor points, u bodyB.velocity.vsub(bodyA.velocity,u); // Add rotational velocity bodyB.angularVelocity.cross(rj,tmp); u.vadd(tmp,u); bodyA.angularVelocity.cross(ri,tmp); u.vsub(tmp,u); // F = - k * ( x - L ) - D * ( u ) r_unit.mult(-k*(rlen-l) - d*u.dot(r_unit), f); // Add forces to bodies bodyA.force.vsub(f,bodyA.force); bodyB.force.vadd(f,bodyB.force); // Angular force ri.cross(f,ri_x_f); rj.cross(f,rj_x_f); bodyA.torque.vsub(ri_x_f,bodyA.torque); bodyB.torque.vadd(rj_x_f,bodyB.torque); }; },{"../math/Vec3":52}],58:[function(require,module,exports){ var Vec3 = require('../math/Vec3'); var Transform = require('../math/Transform'); var RaycastResult = require('../collision/RaycastResult'); var Utils = require('../utils/Utils'); module.exports = WheelInfo; /** * @class WheelInfo * @constructor * @param {Object} [options] * * @param {Vec3} [options.chassisConnectionPointLocal] * @param {Vec3} [options.chassisConnectionPointWorld] * @param {Vec3} [options.directionLocal] * @param {Vec3} [options.directionWorld] * @param {Vec3} [options.axleLocal] * @param {Vec3} [options.axleWorld] * @param {number} [options.suspensionRestLength=1] * @param {number} [options.suspensionMaxLength=2] * @param {number} [options.radius=1] * @param {number} [options.suspensionStiffness=100] * @param {number} [options.dampingCompression=10] * @param {number} [options.dampingRelaxation=10] * @param {number} [options.frictionSlip=10000] * @param {number} [options.steering=0] * @param {number} [options.rotation=0] * @param {number} [options.deltaRotation=0] * @param {number} [options.rollInfluence=0.01] * @param {number} [options.maxSuspensionForce] * @param {boolean} [options.isFrontWheel=true] * @param {number} [options.clippedInvContactDotSuspension=1] * @param {number} [options.suspensionRelativeVelocity=0] * @param {number} [options.suspensionForce=0] * @param {number} [options.skidInfo=0] * @param {number} [options.suspensionLength=0] * @param {number} [options.maxSuspensionTravel=1] * @param {boolean} [options.useCustomSlidingRotationalSpeed=false] * @param {number} [options.customSlidingRotationalSpeed=-0.1] */ function WheelInfo(options){ options = Utils.defaults(options, { chassisConnectionPointLocal: new Vec3(), chassisConnectionPointWorld: new Vec3(), directionLocal: new Vec3(), directionWorld: new Vec3(), axleLocal: new Vec3(), axleWorld: new Vec3(), suspensionRestLength: 1, suspensionMaxLength: 2, radius: 1, suspensionStiffness: 100, dampingCompression: 10, dampingRelaxation: 10, frictionSlip: 10000, steering: 0, rotation: 0, deltaRotation: 0, rollInfluence: 0.01, maxSuspensionForce: Number.MAX_VALUE, isFrontWheel: true, clippedInvContactDotSuspension: 1, suspensionRelativeVelocity: 0, suspensionForce: 0, skidInfo: 0, suspensionLength: 0, maxSuspensionTravel: 1, useCustomSlidingRotationalSpeed: false, customSlidingRotationalSpeed: -0.1 }); /** * Max travel distance of the suspension, in meters. * @property {number} maxSuspensionTravel */ this.maxSuspensionTravel = options.maxSuspensionTravel; /** * Speed to apply to the wheel rotation when the wheel is sliding. * @property {number} customSlidingRotationalSpeed */ this.customSlidingRotationalSpeed = options.customSlidingRotationalSpeed; /** * If the customSlidingRotationalSpeed should be used. * @property {Boolean} useCustomSlidingRotationalSpeed */ this.useCustomSlidingRotationalSpeed = options.useCustomSlidingRotationalSpeed; /** * @property {Boolean} sliding */ this.sliding = false; /** * Connection point, defined locally in the chassis body frame. * @property {Vec3} chassisConnectionPointLocal */ this.chassisConnectionPointLocal = options.chassisConnectionPointLocal.clone(); /** * @property {Vec3} chassisConnectionPointWorld */ this.chassisConnectionPointWorld = options.chassisConnectionPointWorld.clone(); /** * @property {Vec3} directionLocal */ this.directionLocal = options.directionLocal.clone(); /** * @property {Vec3} directionWorld */ this.directionWorld = options.directionWorld.clone(); /** * @property {Vec3} axleLocal */ this.axleLocal = options.axleLocal.clone(); /** * @property {Vec3} axleWorld */ this.axleWorld = options.axleWorld.clone(); /** * @property {number} suspensionRestLength */ this.suspensionRestLength = options.suspensionRestLength; /** * @property {number} suspensionMaxLength */ this.suspensionMaxLength = options.suspensionMaxLength; /** * @property {number} radius */ this.radius = options.radius; /** * @property {number} suspensionStiffness */ this.suspensionStiffness = options.suspensionStiffness; /** * @property {number} dampingCompression */ this.dampingCompression = options.dampingCompression; /** * @property {number} dampingRelaxation */ this.dampingRelaxation = options.dampingRelaxation; /** * @property {number} frictionSlip */ this.frictionSlip = options.frictionSlip; /** * @property {number} steering */ this.steering = 0; /** * Rotation value, in radians. * @property {number} rotation */ this.rotation = 0; /** * @property {number} deltaRotation */ this.deltaRotation = 0; /** * @property {number} rollInfluence */ this.rollInfluence = options.rollInfluence; /** * @property {number} maxSuspensionForce */ this.maxSuspensionForce = options.maxSuspensionForce; /** * @property {number} engineForce */ this.engineForce = 0; /** * @property {number} brake */ this.brake = 0; /** * @property {number} isFrontWheel */ this.isFrontWheel = options.isFrontWheel; /** * @property {number} clippedInvContactDotSuspension */ this.clippedInvContactDotSuspension = 1; /** * @property {number} suspensionRelativeVelocity */ this.suspensionRelativeVelocity = 0; /** * @property {number} suspensionForce */ this.suspensionForce = 0; /** * @property {number} skidInfo */ this.skidInfo = 0; /** * @property {number} suspensionLength */ this.suspensionLength = 0; /** * @property {number} sideImpulse */ this.sideImpulse = 0; /** * @property {number} forwardImpulse */ this.forwardImpulse = 0; /** * The result from raycasting * @property {RaycastResult} raycastResult */ this.raycastResult = new RaycastResult(); /** * Wheel world transform * @property {Transform} worldTransform */ this.worldTransform = new Transform(); /** * @property {boolean} isInContact */ this.isInContact = false; } var chassis_velocity_at_contactPoint = new Vec3(); var relpos = new Vec3(); var chassis_velocity_at_contactPoint = new Vec3(); WheelInfo.prototype.updateWheel = function(chassis){ var raycastResult = this.raycastResult; if (this.isInContact){ var project= raycastResult.hitNormalWorld.dot(raycastResult.directionWorld); raycastResult.hitPointWorld.vsub(chassis.position, relpos); chassis.getVelocityAtWorldPoint(relpos, chassis_velocity_at_contactPoint); var projVel = raycastResult.hitNormalWorld.dot( chassis_velocity_at_contactPoint ); if (project >= -0.1) { this.suspensionRelativeVelocity = 0.0; this.clippedInvContactDotSuspension = 1.0 / 0.1; } else { var inv = -1 / project; this.suspensionRelativeVelocity = projVel * inv; this.clippedInvContactDotSuspension = inv; } } else { // Not in contact : position wheel in a nice (rest length) position raycastResult.suspensionLength = this.suspensionRestLength; this.suspensionRelativeVelocity = 0.0; raycastResult.directionWorld.scale(-1, raycastResult.hitNormalWorld); this.clippedInvContactDotSuspension = 1.0; } }; },{"../collision/RaycastResult":32,"../math/Transform":51,"../math/Vec3":52,"../utils/Utils":75}],59:[function(require,module,exports){ module.exports = Box; var Shape = require('./Shape'); var Vec3 = require('../math/Vec3'); var ConvexPolyhedron = require('./ConvexPolyhedron'); /** * A 3d box shape. * @class Box * @constructor * @param {Vec3} halfExtents * @author schteppe * @extends Shape */ function Box(halfExtents){ Shape.call(this); this.type = Shape.types.BOX; /** * @property halfExtents * @type {Vec3} */ this.halfExtents = halfExtents; /** * Used by the contact generator to make contacts with other convex polyhedra for example * @property convexPolyhedronRepresentation * @type {ConvexPolyhedron} */ this.convexPolyhedronRepresentation = null; this.updateConvexPolyhedronRepresentation(); this.updateBoundingSphereRadius(); } Box.prototype = new Shape(); Box.prototype.constructor = Box; /** * Updates the local convex polyhedron representation used for some collisions. * @method updateConvexPolyhedronRepresentation */ Box.prototype.updateConvexPolyhedronRepresentation = function(){ var sx = this.halfExtents.x; var sy = this.halfExtents.y; var sz = this.halfExtents.z; var V = Vec3; var vertices = [ new V(-sx,-sy,-sz), new V( sx,-sy,-sz), new V( sx, sy,-sz), new V(-sx, sy,-sz), new V(-sx,-sy, sz), new V( sx,-sy, sz), new V( sx, sy, sz), new V(-sx, sy, sz) ]; var indices = [ [3,2,1,0], // -z [4,5,6,7], // +z [5,4,0,1], // -y [2,3,7,6], // +y [0,4,7,3], // -x [1,2,6,5], // +x ]; var axes = [ new V(0, 0, 1), new V(0, 1, 0), new V(1, 0, 0) ]; var h = new ConvexPolyhedron(vertices, indices); this.convexPolyhedronRepresentation = h; h.material = this.material; }; /** * @method calculateLocalInertia * @param {Number} mass * @param {Vec3} target * @return {Vec3} */ Box.prototype.calculateLocalInertia = function(mass,target){ target = target || new Vec3(); Box.calculateInertia(this.halfExtents, mass, target); return target; }; Box.calculateInertia = function(halfExtents,mass,target){ var e = halfExtents; target.x = 1.0 / 12.0 * mass * ( 2*e.y*2*e.y + 2*e.z*2*e.z ); target.y = 1.0 / 12.0 * mass * ( 2*e.x*2*e.x + 2*e.z*2*e.z ); target.z = 1.0 / 12.0 * mass * ( 2*e.y*2*e.y + 2*e.x*2*e.x ); }; /** * Get the box 6 side normals * @method getSideNormals * @param {array} sixTargetVectors An array of 6 vectors, to store the resulting side normals in. * @param {Quaternion} quat Orientation to apply to the normal vectors. If not provided, the vectors will be in respect to the local frame. * @return {array} */ Box.prototype.getSideNormals = function(sixTargetVectors,quat){ var sides = sixTargetVectors; var ex = this.halfExtents; sides[0].set( ex.x, 0, 0); sides[1].set( 0, ex.y, 0); sides[2].set( 0, 0, ex.z); sides[3].set( -ex.x, 0, 0); sides[4].set( 0, -ex.y, 0); sides[5].set( 0, 0, -ex.z); if(quat!==undefined){ for(var i=0; i!==sides.length; i++){ quat.vmult(sides[i],sides[i]); } } return sides; }; Box.prototype.volume = function(){ return 8.0 * this.halfExtents.x * this.halfExtents.y * this.halfExtents.z; }; Box.prototype.updateBoundingSphereRadius = function(){ this.boundingSphereRadius = this.halfExtents.norm(); }; var worldCornerTempPos = new Vec3(); var worldCornerTempNeg = new Vec3(); Box.prototype.forEachWorldCorner = function(pos,quat,callback){ var e = this.halfExtents; var corners = [[ e.x, e.y, e.z], [ -e.x, e.y, e.z], [ -e.x, -e.y, e.z], [ -e.x, -e.y, -e.z], [ e.x, -e.y, -e.z], [ e.x, e.y, -e.z], [ -e.x, e.y, -e.z], [ e.x, -e.y, e.z]]; for(var i=0; i max.x){ max.x = x; } if(y > max.y){ max.y = y; } if(z > max.z){ max.z = z; } if(x < min.x){ min.x = x; } if(y < min.y){ min.y = y; } if(z < min.z){ min.z = z; } } // Get each axis max // min.set(Infinity,Infinity,Infinity); // max.set(-Infinity,-Infinity,-Infinity); // this.forEachWorldCorner(pos,quat,function(x,y,z){ // if(x > max.x){ // max.x = x; // } // if(y > max.y){ // max.y = y; // } // if(z > max.z){ // max.z = z; // } // if(x < min.x){ // min.x = x; // } // if(y < min.y){ // min.y = y; // } // if(z < min.z){ // min.z = z; // } // }); }; },{"../math/Vec3":52,"./ConvexPolyhedron":60,"./Shape":65}],60:[function(require,module,exports){ module.exports = ConvexPolyhedron; var Shape = require('./Shape'); var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var Transform = require('../math/Transform'); /** * A set of polygons describing a convex shape. * @class ConvexPolyhedron * @constructor * @extends Shape * @description The shape MUST be convex for the code to work properly. No polygons may be coplanar (contained * in the same 3D plane), instead these should be merged into one polygon. * * @param {array} points An array of Vec3's * @param {array} faces Array of integer arrays, describing which vertices that is included in each face. * * @author qiao / https://github.com/qiao (original author, see https://github.com/qiao/three.js/commit/85026f0c769e4000148a67d45a9e9b9c5108836f) * @author schteppe / https://github.com/schteppe * @see http://www.altdevblogaday.com/2011/05/13/contact-generation-between-3d-convex-meshes/ * @see http://bullet.googlecode.com/svn/trunk/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp * * @todo Move the clipping functions to ContactGenerator? * @todo Automatically merge coplanar polygons in constructor. */ function ConvexPolyhedron(points, faces, uniqueAxes) { var that = this; Shape.call(this); this.type = Shape.types.CONVEXPOLYHEDRON; /** * Array of Vec3 * @property vertices * @type {Array} */ this.vertices = points||[]; this.worldVertices = []; // World transformed version of .vertices this.worldVerticesNeedsUpdate = true; /** * Array of integer arrays, indicating which vertices each face consists of * @property faces * @type {Array} */ this.faces = faces||[]; /** * Array of Vec3 * @property faceNormals * @type {Array} */ this.faceNormals = []; this.computeNormals(); this.worldFaceNormalsNeedsUpdate = true; this.worldFaceNormals = []; // World transformed version of .faceNormals /** * Array of Vec3 * @property uniqueEdges * @type {Array} */ this.uniqueEdges = []; /** * If given, these locally defined, normalized axes are the only ones being checked when doing separating axis check. * @property {Array} uniqueAxes */ this.uniqueAxes = uniqueAxes ? uniqueAxes.slice() : null; this.computeEdges(); this.updateBoundingSphereRadius(); } ConvexPolyhedron.prototype = new Shape(); ConvexPolyhedron.prototype.constructor = ConvexPolyhedron; var computeEdges_tmpEdge = new Vec3(); /** * Computes uniqueEdges * @method computeEdges */ ConvexPolyhedron.prototype.computeEdges = function(){ var faces = this.faces; var vertices = this.vertices; var nv = vertices.length; var edges = this.uniqueEdges; edges.length = 0; var edge = computeEdges_tmpEdge; for(var i=0; i !== faces.length; i++){ var face = faces[i]; var numVertices = face.length; for(var j = 0; j !== numVertices; j++){ var k = ( j+1 ) % numVertices; vertices[face[j]].vsub(vertices[face[k]], edge); edge.normalize(); var found = false; for(var p=0; p !== edges.length; p++){ if (edges[p].almostEquals(edge) || edges[p].almostEquals(edge)){ found = true; break; } } if (!found){ edges.push(edge.clone()); } } } }; /** * Compute the normals of the faces. Will reuse existing Vec3 objects in the .faceNormals array if they exist. * @method computeNormals */ ConvexPolyhedron.prototype.computeNormals = function(){ this.faceNormals.length = this.faces.length; // Generate normals for(var i=0; i dmax){ dmax = d; closestFaceB = face; } } var worldVertsB1 = []; var polyB = hullB.faces[closestFaceB]; var numVertices = polyB.length; for(var e0=0; e0=0){ this.clipFaceAgainstHull(separatingNormal, posA, quatA, worldVertsB1, minDist, maxDist, result); } }; /** * Find the separating axis between this hull and another * @method findSeparatingAxis * @param {ConvexPolyhedron} hullB * @param {Vec3} posA * @param {Quaternion} quatA * @param {Vec3} posB * @param {Quaternion} quatB * @param {Vec3} target The target vector to save the axis in * @return {bool} Returns false if a separation is found, else true */ var fsa_faceANormalWS3 = new Vec3(), fsa_Worldnormal1 = new Vec3(), fsa_deltaC = new Vec3(), fsa_worldEdge0 = new Vec3(), fsa_worldEdge1 = new Vec3(), fsa_Cross = new Vec3(); ConvexPolyhedron.prototype.findSeparatingAxis = function(hullB,posA,quatA,posB,quatB,target, faceListA, faceListB){ var faceANormalWS3 = fsa_faceANormalWS3, Worldnormal1 = fsa_Worldnormal1, deltaC = fsa_deltaC, worldEdge0 = fsa_worldEdge0, worldEdge1 = fsa_worldEdge1, Cross = fsa_Cross; var dmin = Number.MAX_VALUE; var hullA = this; var curPlaneTests=0; if(!hullA.uniqueAxes){ var numFacesA = faceListA ? faceListA.length : hullA.faces.length; // Test face normals from hullA for(var i=0; i0.0){ target.negate(target); } return true; }; var maxminA=[], maxminB=[]; /** * Test separating axis against two hulls. Both hulls are projected onto the axis and the overlap size is returned if there is one. * @method testSepAxis * @param {Vec3} axis * @param {ConvexPolyhedron} hullB * @param {Vec3} posA * @param {Quaternion} quatA * @param {Vec3} posB * @param {Quaternion} quatB * @return {number} The overlap depth, or FALSE if no penetration. */ ConvexPolyhedron.prototype.testSepAxis = function(axis, hullB, posA, quatA, posB, quatB){ var hullA=this; ConvexPolyhedron.project(hullA, axis, posA, quatA, maxminA); ConvexPolyhedron.project(hullB, axis, posB, quatB, maxminB); var maxA = maxminA[0]; var minA = maxminA[1]; var maxB = maxminB[0]; var minB = maxminB[1]; if(maxA= 0, so output intersection var newv = new Vec3(); firstVertex.lerp(lastVertex, n_dot_first / (n_dot_first - n_dot_last), newv); outVertices.push(newv); } } else { if(n_dot_last<0){ // Start >= 0, end < 0 so output intersection and end var newv = new Vec3(); firstVertex.lerp(lastVertex, n_dot_first / (n_dot_first - n_dot_last), newv); outVertices.push(newv); outVertices.push(lastVertex); } } firstVertex = lastVertex; n_dot_first = n_dot_last; } return outVertices; }; // Updates .worldVertices and sets .worldVerticesNeedsUpdate to false. ConvexPolyhedron.prototype.computeWorldVertices = function(position,quat){ var N = this.vertices.length; while(this.worldVertices.length < N){ this.worldVertices.push( new Vec3() ); } var verts = this.vertices, worldVerts = this.worldVertices; for(var i=0; i!==N; i++){ quat.vmult( verts[i] , worldVerts[i] ); position.vadd( worldVerts[i] , worldVerts[i] ); } this.worldVerticesNeedsUpdate = false; }; var computeLocalAABB_worldVert = new Vec3(); ConvexPolyhedron.prototype.computeLocalAABB = function(aabbmin,aabbmax){ var n = this.vertices.length, vertices = this.vertices, worldVert = computeLocalAABB_worldVert; aabbmin.set(Number.MAX_VALUE, Number.MAX_VALUE, Number.MAX_VALUE); aabbmax.set(-Number.MAX_VALUE, -Number.MAX_VALUE, -Number.MAX_VALUE); for(var i=0; i aabbmax.x){ aabbmax.x = v.x; } if (v.y < aabbmin.y){ aabbmin.y = v.y; } else if(v.y > aabbmax.y){ aabbmax.y = v.y; } if (v.z < aabbmin.z){ aabbmin.z = v.z; } else if(v.z > aabbmax.z){ aabbmax.z = v.z; } } }; /** * Updates .worldVertices and sets .worldVerticesNeedsUpdate to false. * @method computeWorldFaceNormals * @param {Quaternion} quat */ ConvexPolyhedron.prototype.computeWorldFaceNormals = function(quat){ var N = this.faceNormals.length; while(this.worldFaceNormals.length < N){ this.worldFaceNormals.push( new Vec3() ); } var normals = this.faceNormals, worldNormals = this.worldFaceNormals; for(var i=0; i!==N; i++){ quat.vmult( normals[i] , worldNormals[i] ); } this.worldFaceNormalsNeedsUpdate = false; }; /** * @method updateBoundingSphereRadius */ ConvexPolyhedron.prototype.updateBoundingSphereRadius = function(){ // Assume points are distributed with local (0,0,0) as center var max2 = 0; var verts = this.vertices; for(var i=0, N=verts.length; i!==N; i++) { var norm2 = verts[i].norm2(); if(norm2 > max2){ max2 = norm2; } } this.boundingSphereRadius = Math.sqrt(max2); }; var tempWorldVertex = new Vec3(); /** * @method calculateWorldAABB * @param {Vec3} pos * @param {Quaternion} quat * @param {Vec3} min * @param {Vec3} max */ ConvexPolyhedron.prototype.calculateWorldAABB = function(pos,quat,min,max){ var n = this.vertices.length, verts = this.vertices; var minx,miny,minz,maxx,maxy,maxz; for(var i=0; i maxx || maxx===undefined){ maxx = v.x; } if (v.y < miny || miny===undefined){ miny = v.y; } else if(v.y > maxy || maxy===undefined){ maxy = v.y; } if (v.z < minz || minz===undefined){ minz = v.z; } else if(v.z > maxz || maxz===undefined){ maxz = v.z; } } min.set(minx,miny,minz); max.set(maxx,maxy,maxz); }; /** * Get approximate convex volume * @method volume * @return {Number} */ ConvexPolyhedron.prototype.volume = function(){ return 4.0 * Math.PI * this.boundingSphereRadius / 3.0; }; /** * Get an average of all the vertices positions * @method getAveragePointLocal * @param {Vec3} target * @return {Vec3} */ ConvexPolyhedron.prototype.getAveragePointLocal = function(target){ target = target || new Vec3(); var n = this.vertices.length, verts = this.vertices; for(var i=0; i0) || (r1>0 && r2<0)){ return false; // Encountered some other sign. Exit. } else { } } // If we got here, all dot products were of the same sign. return positiveResult ? 1 : -1; }; /** * Get max and min dot product of a convex hull at position (pos,quat) projected onto an axis. Results are saved in the array maxmin. * @static * @method project * @param {ConvexPolyhedron} hull * @param {Vec3} axis * @param {Vec3} pos * @param {Quaternion} quat * @param {array} result result[0] and result[1] will be set to maximum and minimum, respectively. */ var project_worldVertex = new Vec3(); var project_localAxis = new Vec3(); var project_localOrigin = new Vec3(); ConvexPolyhedron.project = function(hull, axis, pos, quat, result){ var n = hull.vertices.length, worldVertex = project_worldVertex, localAxis = project_localAxis, max = 0, min = 0, localOrigin = project_localOrigin, vs = hull.vertices; localOrigin.setZero(); // Transform the axis to local Transform.vectorToLocalFrame(pos, quat, axis, localAxis); Transform.pointToLocalFrame(pos, quat, localOrigin, localOrigin); var add = localOrigin.dot(localAxis); min = max = vs[0].dot(localAxis); for(var i = 1; i < n; i++){ var val = vs[i].dot(localAxis); if(val > max){ max = val; } if(val < min){ min = val; } } min -= add; max -= add; if(min > max){ // Inconsistent - swap var temp = min; min = max; max = temp; } // Output result[0] = max; result[1] = min; }; },{"../math/Quaternion":50,"../math/Transform":51,"../math/Vec3":52,"./Shape":65}],61:[function(require,module,exports){ module.exports = Cylinder; var Shape = require('./Shape'); var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var ConvexPolyhedron = require('./ConvexPolyhedron'); /** * @class Cylinder * @constructor * @extends ConvexPolyhedron * @author schteppe / https://github.com/schteppe * @param {Number} radiusTop * @param {Number} radiusBottom * @param {Number} height * @param {Number} numSegments The number of segments to build the cylinder out of */ function Cylinder( radiusTop, radiusBottom, height , numSegments ) { var N = numSegments, verts = [], axes = [], faces = [], bottomface = [], topface = [], cos = Math.cos, sin = Math.sin; // First bottom point verts.push(new Vec3(radiusBottom*cos(0), radiusBottom*sin(0), -height*0.5)); bottomface.push(0); // First top point verts.push(new Vec3(radiusTop*cos(0), radiusTop*sin(0), height*0.5)); topface.push(1); for(var i=0; i { convex: ..., offset: ... } // for example: // _cachedPillars["0_2_1"] this._cachedPillars = {}; } Heightfield.prototype = new Shape(); /** * Call whenever you change the data array. * @method update */ Heightfield.prototype.update = function(){ this._cachedPillars = {}; }; /** * Update the .minValue property * @method updateMinValue */ Heightfield.prototype.updateMinValue = function(){ var data = this.data; var minValue = data[0][0]; for(var i=0; i !== data.length; i++){ for(var j=0; j !== data[i].length; j++){ var v = data[i][j]; if(v < minValue){ minValue = v; } } } this.minValue = minValue; }; /** * Update the .maxValue property * @method updateMaxValue */ Heightfield.prototype.updateMaxValue = function(){ var data = this.data; var maxValue = data[0][0]; for(var i=0; i !== data.length; i++){ for(var j=0; j !== data[i].length; j++){ var v = data[i][j]; if(v > maxValue){ maxValue = v; } } } this.maxValue = maxValue; }; /** * Set the height value at an index. Don't forget to update maxValue and minValue after you're done. * @method setHeightValueAtIndex * @param {integer} xi * @param {integer} yi * @param {number} value */ Heightfield.prototype.setHeightValueAtIndex = function(xi, yi, value){ var data = this.data; data[xi][yi] = value; // Invalidate cache this.clearCachedConvexTrianglePillar(xi, yi, false); if(xi > 0){ this.clearCachedConvexTrianglePillar(xi - 1, yi, true); this.clearCachedConvexTrianglePillar(xi - 1, yi, false); } if(yi > 0){ this.clearCachedConvexTrianglePillar(xi, yi - 1, true); this.clearCachedConvexTrianglePillar(xi, yi - 1, false); } if(yi > 0 && xi > 0){ this.clearCachedConvexTrianglePillar(xi - 1, yi - 1, true); } }; /** * Get max/min in a rectangle in the matrix data * @method getRectMinMax * @param {integer} iMinX * @param {integer} iMinY * @param {integer} iMaxX * @param {integer} iMaxY * @param {array} [result] An array to store the results in. * @return {array} The result array, if it was passed in. Minimum will be at position 0 and max at 1. */ Heightfield.prototype.getRectMinMax = function (iMinX, iMinY, iMaxX, iMaxY, result) { result = result || []; // Get max and min of the data var data = this.data, max = this.minValue; // Set first value for(var i = iMinX; i <= iMaxX; i++){ for(var j = iMinY; j <= iMaxY; j++){ var height = data[i][j]; if(height > max){ max = height; } } } result[0] = this.minValue; result[1] = max; }; /** * Get the index of a local position on the heightfield. The indexes indicate the rectangles, so if your terrain is made of N x N height data points, you will have rectangle indexes ranging from 0 to N-1. * @method getIndexOfPosition * @param {number} x * @param {number} y * @param {array} result Two-element array * @param {boolean} clamp If the position should be clamped to the heightfield edge. * @return {boolean} */ Heightfield.prototype.getIndexOfPosition = function (x, y, result, clamp) { // Get the index of the data points to test against var w = this.elementSize; var data = this.data; var xi = Math.floor(x / w); var yi = Math.floor(y / w); result[0] = xi; result[1] = yi; if(clamp){ // Clamp index to edges if(xi < 0){ xi = 0; } if(yi < 0){ yi = 0; } if(xi >= data.length - 1){ xi = data.length - 1; } if(yi >= data[0].length - 1){ yi = data[0].length - 1; } } // Bail out if we are out of the terrain if(xi < 0 || yi < 0 || xi >= data.length-1 || yi >= data[0].length-1){ return false; } return true; }; var getHeightAt_idx = []; var getHeightAt_weights = new Vec3(); var getHeightAt_a = new Vec3(); var getHeightAt_b = new Vec3(); var getHeightAt_c = new Vec3(); Heightfield.prototype.getTriangleAt = function(x, y, edgeClamp, a, b, c){ var idx = getHeightAt_idx; this.getIndexOfPosition(x, y, idx, edgeClamp); var xi = idx[0]; var yi = idx[1]; var data = this.data; if(edgeClamp){ xi = Math.min(data.length - 2, Math.max(0, xi)); yi = Math.min(data[0].length - 2, Math.max(0, yi)); } var elementSize = this.elementSize; var lowerDist2 = Math.pow(x / elementSize - xi, 2) + Math.pow(y / elementSize - yi, 2); var upperDist2 = Math.pow(x / elementSize - (xi + 1), 2) + Math.pow(y / elementSize - (yi + 1), 2); var upper = lowerDist2 > upperDist2; this.getTriangle(xi, yi, upper, a, b, c); return upper; }; var getNormalAt_a = new Vec3(); var getNormalAt_b = new Vec3(); var getNormalAt_c = new Vec3(); var getNormalAt_e0 = new Vec3(); var getNormalAt_e1 = new Vec3(); Heightfield.prototype.getNormalAt = function(x, y, edgeClamp, result){ var a = getNormalAt_a; var b = getNormalAt_b; var c = getNormalAt_c; var e0 = getNormalAt_e0; var e1 = getNormalAt_e1; this.getTriangleAt(x, y, edgeClamp, a, b, c); b.vsub(a, e0); c.vsub(a, e1); e0.cross(e1, result); result.normalize(); }; /** * Get an AABB of a square in the heightfield * @param {number} xi * @param {number} yi * @param {AABB} result */ Heightfield.prototype.getAabbAtIndex = function(xi, yi, result){ var data = this.data; var elementSize = this.elementSize; result.lowerBound.set( xi * elementSize, yi * elementSize, data[xi][yi] ); result.upperBound.set( (xi + 1) * elementSize, (yi + 1) * elementSize, data[xi + 1][yi + 1] ); }; /** * Get the height in the heightfield at a given position * @param {number} x * @param {number} y * @param {boolean} edgeClamp * @return {number} */ Heightfield.prototype.getHeightAt = function(x, y, edgeClamp){ var data = this.data; var a = getHeightAt_a; var b = getHeightAt_b; var c = getHeightAt_c; var idx = getHeightAt_idx; this.getIndexOfPosition(x, y, idx, edgeClamp); var xi = idx[0]; var yi = idx[1]; if(edgeClamp){ xi = Math.min(data.length - 2, Math.max(0, xi)); yi = Math.min(data[0].length - 2, Math.max(0, yi)); } var upper = this.getTriangleAt(x, y, edgeClamp, a, b, c); barycentricWeights(x, y, a.x, a.y, b.x, b.y, c.x, c.y, getHeightAt_weights); var w = getHeightAt_weights; if(upper){ // Top triangle verts return data[xi + 1][yi + 1] * w.x + data[xi][yi + 1] * w.y + data[xi + 1][yi] * w.z; } else { // Top triangle verts return data[xi][yi] * w.x + data[xi + 1][yi] * w.y + data[xi][yi + 1] * w.z; } }; // from https://en.wikipedia.org/wiki/Barycentric_coordinate_system function barycentricWeights(x, y, ax, ay, bx, by, cx, cy, result){ result.x = ((by - cy) * (x - cx) + (cx - bx) * (y - cy)) / ((by - cy) * (ax - cx) + (cx - bx) * (ay - cy)); result.y = ((cy - ay) * (x - cx) + (ax - cx) * (y - cy)) / ((by - cy) * (ax - cx) + (cx - bx) * (ay - cy)); result.z = 1 - result.x - result.y; } Heightfield.prototype.getCacheConvexTrianglePillarKey = function(xi, yi, getUpperTriangle){ return xi + '_' + yi + '_' + (getUpperTriangle ? 1 : 0); }; Heightfield.prototype.getCachedConvexTrianglePillar = function(xi, yi, getUpperTriangle){ return this._cachedPillars[this.getCacheConvexTrianglePillarKey(xi, yi, getUpperTriangle)]; }; Heightfield.prototype.setCachedConvexTrianglePillar = function(xi, yi, getUpperTriangle, convex, offset){ this._cachedPillars[this.getCacheConvexTrianglePillarKey(xi, yi, getUpperTriangle)] = { convex: convex, offset: offset }; }; Heightfield.prototype.clearCachedConvexTrianglePillar = function(xi, yi, getUpperTriangle){ delete this._cachedPillars[this.getCacheConvexTrianglePillarKey(xi, yi, getUpperTriangle)]; }; /** * Get a triangle from the heightfield * @param {number} xi * @param {number} yi * @param {boolean} upper * @param {Vec3} a * @param {Vec3} b * @param {Vec3} c */ Heightfield.prototype.getTriangle = function(xi, yi, upper, a, b, c){ var data = this.data; var elementSize = this.elementSize; if(upper){ // Top triangle verts a.set( (xi + 1) * elementSize, (yi + 1) * elementSize, data[xi + 1][yi + 1] ); b.set( xi * elementSize, (yi + 1) * elementSize, data[xi][yi + 1] ); c.set( (xi + 1) * elementSize, yi * elementSize, data[xi + 1][yi] ); } else { // Top triangle verts a.set( xi * elementSize, yi * elementSize, data[xi][yi] ); b.set( (xi + 1) * elementSize, yi * elementSize, data[xi + 1][yi] ); c.set( xi * elementSize, (yi + 1) * elementSize, data[xi][yi + 1] ); } }; /** * Get a triangle in the terrain in the form of a triangular convex shape. * @method getConvexTrianglePillar * @param {integer} i * @param {integer} j * @param {boolean} getUpperTriangle */ Heightfield.prototype.getConvexTrianglePillar = function(xi, yi, getUpperTriangle){ var result = this.pillarConvex; var offsetResult = this.pillarOffset; if(this.cacheEnabled){ var data = this.getCachedConvexTrianglePillar(xi, yi, getUpperTriangle); if(data){ this.pillarConvex = data.convex; this.pillarOffset = data.offset; return; } result = new ConvexPolyhedron(); offsetResult = new Vec3(); this.pillarConvex = result; this.pillarOffset = offsetResult; } var data = this.data; var elementSize = this.elementSize; var faces = result.faces; // Reuse verts if possible result.vertices.length = 6; for (var i = 0; i < 6; i++) { if(!result.vertices[i]){ result.vertices[i] = new Vec3(); } } // Reuse faces if possible faces.length = 5; for (var i = 0; i < 5; i++) { if(!faces[i]){ faces[i] = []; } } var verts = result.vertices; var h = (Math.min( data[xi][yi], data[xi+1][yi], data[xi][yi+1], data[xi+1][yi+1] ) - this.minValue ) / 2 + this.minValue; if (!getUpperTriangle) { // Center of the triangle pillar - all polygons are given relative to this one offsetResult.set( (xi + 0.25) * elementSize, // sort of center of a triangle (yi + 0.25) * elementSize, h // vertical center ); // Top triangle verts verts[0].set( -0.25 * elementSize, -0.25 * elementSize, data[xi][yi] - h ); verts[1].set( 0.75 * elementSize, -0.25 * elementSize, data[xi + 1][yi] - h ); verts[2].set( -0.25 * elementSize, 0.75 * elementSize, data[xi][yi + 1] - h ); // bottom triangle verts verts[3].set( -0.25 * elementSize, -0.25 * elementSize, -h-1 ); verts[4].set( 0.75 * elementSize, -0.25 * elementSize, -h-1 ); verts[5].set( -0.25 * elementSize, 0.75 * elementSize, -h-1 ); // top triangle faces[0][0] = 0; faces[0][1] = 1; faces[0][2] = 2; // bottom triangle faces[1][0] = 5; faces[1][1] = 4; faces[1][2] = 3; // -x facing quad faces[2][0] = 0; faces[2][1] = 2; faces[2][2] = 5; faces[2][3] = 3; // -y facing quad faces[3][0] = 1; faces[3][1] = 0; faces[3][2] = 3; faces[3][3] = 4; // +xy facing quad faces[4][0] = 4; faces[4][1] = 5; faces[4][2] = 2; faces[4][3] = 1; } else { // Center of the triangle pillar - all polygons are given relative to this one offsetResult.set( (xi + 0.75) * elementSize, // sort of center of a triangle (yi + 0.75) * elementSize, h // vertical center ); // Top triangle verts verts[0].set( 0.25 * elementSize, 0.25 * elementSize, data[xi + 1][yi + 1] - h ); verts[1].set( -0.75 * elementSize, 0.25 * elementSize, data[xi][yi + 1] - h ); verts[2].set( 0.25 * elementSize, -0.75 * elementSize, data[xi + 1][yi] - h ); // bottom triangle verts verts[3].set( 0.25 * elementSize, 0.25 * elementSize, - h-1 ); verts[4].set( -0.75 * elementSize, 0.25 * elementSize, - h-1 ); verts[5].set( 0.25 * elementSize, -0.75 * elementSize, - h-1 ); // Top triangle faces[0][0] = 0; faces[0][1] = 1; faces[0][2] = 2; // bottom triangle faces[1][0] = 5; faces[1][1] = 4; faces[1][2] = 3; // +x facing quad faces[2][0] = 2; faces[2][1] = 5; faces[2][2] = 3; faces[2][3] = 0; // +y facing quad faces[3][0] = 3; faces[3][1] = 4; faces[3][2] = 1; faces[3][3] = 0; // -xy facing quad faces[4][0] = 1; faces[4][1] = 4; faces[4][2] = 5; faces[4][3] = 2; } result.computeNormals(); result.computeEdges(); result.updateBoundingSphereRadius(); this.setCachedConvexTrianglePillar(xi, yi, getUpperTriangle, result, offsetResult); }; Heightfield.prototype.calculateLocalInertia = function(mass, target){ target = target || new Vec3(); target.set(0, 0, 0); return target; }; Heightfield.prototype.volume = function(){ return Number.MAX_VALUE; // The terrain is infinite }; Heightfield.prototype.calculateWorldAABB = function(pos, quat, min, max){ // TODO: do it properly min.set(-Number.MAX_VALUE, -Number.MAX_VALUE, -Number.MAX_VALUE); max.set(Number.MAX_VALUE, Number.MAX_VALUE, Number.MAX_VALUE); }; Heightfield.prototype.updateBoundingSphereRadius = function(){ // Use the bounding box of the min/max values var data = this.data, s = this.elementSize; this.boundingSphereRadius = new Vec3(data.length * s, data[0].length * s, Math.max(Math.abs(this.maxValue), Math.abs(this.minValue))).norm(); }; /** * Sets the height values from an image. Currently only supported in browser. * @method setHeightsFromImage * @param {Image} image * @param {Vec3} scale */ Heightfield.prototype.setHeightsFromImage = function(image, scale){ var canvas = document.createElement('canvas'); canvas.width = image.width; canvas.height = image.height; var context = canvas.getContext('2d'); context.drawImage(image, 0, 0); var imageData = context.getImageData(0, 0, image.width, image.height); var matrix = this.data; matrix.length = 0; this.elementSize = Math.abs(scale.x) / imageData.width; for(var i=0; i 0 by subclasses. * @property type * @type {Number} * @see Shape.types */ this.type = 0; /** * The local bounding sphere radius of this shape. * @property {Number} boundingSphereRadius */ this.boundingSphereRadius = 0; /** * Whether to produce contact forces when in contact with other bodies. Note that contacts will be generated, but they will be disabled. * @property {boolean} collisionResponse */ this.collisionResponse = true; /** * @property {Material} material */ this.material = null; /** * @property {Body} body */ this.body = null; } Shape.prototype.constructor = Shape; /** * Computes the bounding sphere radius. The result is stored in the property .boundingSphereRadius * @method updateBoundingSphereRadius */ Shape.prototype.updateBoundingSphereRadius = function(){ throw "computeBoundingSphereRadius() not implemented for shape type "+this.type; }; /** * Get the volume of this shape * @method volume * @return {Number} */ Shape.prototype.volume = function(){ throw "volume() not implemented for shape type "+this.type; }; /** * Calculates the inertia in the local frame for this shape. * @method calculateLocalInertia * @param {Number} mass * @param {Vec3} target * @see http://en.wikipedia.org/wiki/List_of_moments_of_inertia */ Shape.prototype.calculateLocalInertia = function(mass,target){ throw "calculateLocalInertia() not implemented for shape type "+this.type; }; Shape.idCounter = 0; /** * The available shape types. * @static * @property types * @type {Object} */ Shape.types = { SPHERE:1, PLANE:2, BOX:4, COMPOUND:8, CONVEXPOLYHEDRON:16, HEIGHTFIELD:32, PARTICLE:64, CYLINDER:128, TRIMESH:256 }; },{"../material/Material":47,"../math/Quaternion":50,"../math/Vec3":52,"./Shape":65}],66:[function(require,module,exports){ module.exports = Sphere; var Shape = require('./Shape'); var Vec3 = require('../math/Vec3'); /** * Spherical shape * @class Sphere * @constructor * @extends Shape * @param {Number} radius The radius of the sphere, a non-negative number. * @author schteppe / http://github.com/schteppe */ function Sphere(radius){ Shape.call(this); /** * @property {Number} radius */ this.radius = radius!==undefined ? Number(radius) : 1.0; this.type = Shape.types.SPHERE; if(this.radius < 0){ throw new Error('The sphere radius cannot be negative.'); } this.updateBoundingSphereRadius(); } Sphere.prototype = new Shape(); Sphere.prototype.constructor = Sphere; Sphere.prototype.calculateLocalInertia = function(mass,target){ target = target || new Vec3(); var I = 2.0*mass*this.radius*this.radius/5.0; target.x = I; target.y = I; target.z = I; return target; }; Sphere.prototype.volume = function(){ return 4.0 * Math.PI * this.radius / 3.0; }; Sphere.prototype.updateBoundingSphereRadius = function(){ this.boundingSphereRadius = this.radius; }; Sphere.prototype.calculateWorldAABB = function(pos,quat,min,max){ var r = this.radius; var axes = ['x','y','z']; for(var i=0; i u.x){ u.x = v.x; } if(v.y < l.y){ l.y = v.y; } else if(v.y > u.y){ u.y = v.y; } if(v.z < l.z){ l.z = v.z; } else if(v.z > u.z){ u.z = v.z; } } }; /** * Update the .aabb property * @method updateAABB */ Trimesh.prototype.updateAABB = function(){ this.computeLocalAABB(this.aabb); }; /** * Will update the .boundingSphereRadius property * @method updateBoundingSphereRadius */ Trimesh.prototype.updateBoundingSphereRadius = function(){ // Assume points are distributed with local (0,0,0) as center var max2 = 0; var vertices = this.vertices; var v = new Vec3(); for(var i=0, N=vertices.length / 3; i !== N; i++) { this.getVertex(i, v); var norm2 = v.norm2(); if(norm2 > max2){ max2 = norm2; } } this.boundingSphereRadius = Math.sqrt(max2); }; var tempWorldVertex = new Vec3(); var calculateWorldAABB_frame = new Transform(); var calculateWorldAABB_aabb = new AABB(); /** * @method calculateWorldAABB * @param {Vec3} pos * @param {Quaternion} quat * @param {Vec3} min * @param {Vec3} max */ Trimesh.prototype.calculateWorldAABB = function(pos,quat,min,max){ /* var n = this.vertices.length / 3, verts = this.vertices; var minx,miny,minz,maxx,maxy,maxz; var v = tempWorldVertex; for(var i=0; i maxx || maxx===undefined){ maxx = v.x; } if (v.y < miny || miny===undefined){ miny = v.y; } else if(v.y > maxy || maxy===undefined){ maxy = v.y; } if (v.z < minz || minz===undefined){ minz = v.z; } else if(v.z > maxz || maxz===undefined){ maxz = v.z; } } min.set(minx,miny,minz); max.set(maxx,maxy,maxz); */ // Faster approximation using local AABB var frame = calculateWorldAABB_frame; var result = calculateWorldAABB_aabb; frame.position = pos; frame.quaternion = quat; this.aabb.toWorldFrame(frame, result); min.copy(result.lowerBound); max.copy(result.upperBound); }; /** * Get approximate volume * @method volume * @return {Number} */ Trimesh.prototype.volume = function(){ return 4.0 * Math.PI * this.boundingSphereRadius / 3.0; }; /** * Create a Trimesh instance, shaped as a torus. * @static * @method createTorus * @param {number} [radius=1] * @param {number} [tube=0.5] * @param {number} [radialSegments=8] * @param {number} [tubularSegments=6] * @param {number} [arc=6.283185307179586] * @return {Trimesh} A torus */ Trimesh.createTorus = function (radius, tube, radialSegments, tubularSegments, arc) { radius = radius || 1; tube = tube || 0.5; radialSegments = radialSegments || 8; tubularSegments = tubularSegments || 6; arc = arc || Math.PI * 2; var vertices = []; var indices = []; for ( var j = 0; j <= radialSegments; j ++ ) { for ( var i = 0; i <= tubularSegments; i ++ ) { var u = i / tubularSegments * arc; var v = j / radialSegments * Math.PI * 2; var x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); var y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); var z = tube * Math.sin( v ); vertices.push( x, y, z ); } } for ( var j = 1; j <= radialSegments; j ++ ) { for ( var i = 1; i <= tubularSegments; i ++ ) { var a = ( tubularSegments + 1 ) * j + i - 1; var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; var c = ( tubularSegments + 1 ) * ( j - 1 ) + i; var d = ( tubularSegments + 1 ) * j + i; indices.push(a, b, d); indices.push(b, c, d); } } return new Trimesh(vertices, indices); }; },{"../collision/AABB":24,"../math/Quaternion":50,"../math/Transform":51,"../math/Vec3":52,"../utils/Octree":72,"./Shape":65}],68:[function(require,module,exports){ module.exports = GSSolver; var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var Solver = require('./Solver'); /** * Constraint equation Gauss-Seidel solver. * @class GSSolver * @constructor * @todo The spook parameters should be specified for each constraint, not globally. * @author schteppe / https://github.com/schteppe * @see https://www8.cs.umu.se/kurser/5DV058/VT09/lectures/spooknotes.pdf * @extends Solver */ function GSSolver(){ Solver.call(this); /** * The number of solver iterations determines quality of the constraints in the world. The more iterations, the more correct simulation. More iterations need more computations though. If you have a large gravity force in your world, you will need more iterations. * @property iterations * @type {Number} * @todo write more about solver and iterations in the wiki */ this.iterations = 10; /** * When tolerance is reached, the system is assumed to be converged. * @property tolerance * @type {Number} */ this.tolerance = 1e-7; } GSSolver.prototype = new Solver(); var GSSolver_solve_lambda = []; // Just temporary number holders that we want to reuse each solve. var GSSolver_solve_invCs = []; var GSSolver_solve_Bs = []; GSSolver.prototype.solve = function(dt,world){ var iter = 0, maxIter = this.iterations, tolSquared = this.tolerance*this.tolerance, equations = this.equations, Neq = equations.length, bodies = world.bodies, Nbodies = bodies.length, h = dt, q, B, invC, deltalambda, deltalambdaTot, GWlambda, lambdaj; // Update solve mass if(Neq !== 0){ for(var i=0; i!==Nbodies; i++){ bodies[i].updateSolveMassProperties(); } } // Things that does not change during iteration can be computed once var invCs = GSSolver_solve_invCs, Bs = GSSolver_solve_Bs, lambda = GSSolver_solve_lambda; invCs.length = Neq; Bs.length = Neq; lambda.length = Neq; for(var i=0; i!==Neq; i++){ var c = equations[i]; lambda[i] = 0.0; Bs[i] = c.computeB(h); invCs[i] = 1.0 / c.computeC(); } if(Neq !== 0){ // Reset vlambda for(var i=0; i!==Nbodies; i++){ var b=bodies[i], vlambda=b.vlambda, wlambda=b.wlambda; vlambda.set(0,0,0); wlambda.set(0,0,0); } // Iterate over equations for(iter=0; iter!==maxIter; iter++){ // Accumulate the total error for each iteration. deltalambdaTot = 0.0; for(var j=0; j!==Neq; j++){ var c = equations[j]; // Compute iteration B = Bs[j]; invC = invCs[j]; lambdaj = lambda[j]; GWlambda = c.computeGWlambda(); deltalambda = invC * ( B - GWlambda - c.eps * lambdaj ); // Clamp if we are not within the min/max interval if(lambdaj + deltalambda < c.minForce){ deltalambda = c.minForce - lambdaj; } else if(lambdaj + deltalambda > c.maxForce){ deltalambda = c.maxForce - lambdaj; } lambda[j] += deltalambda; deltalambdaTot += deltalambda > 0.0 ? deltalambda : -deltalambda; // abs(deltalambda) c.addToWlambda(deltalambda); } // If the total error is small enough - stop iterate if(deltalambdaTot*deltalambdaTot < tolSquared){ break; } } // Add result to velocity for(var i=0; i!==Nbodies; i++){ var b=bodies[i], v=b.velocity, w=b.angularVelocity; b.vlambda.vmul(b.linearFactor, b.vlambda); v.vadd(b.vlambda, v); b.wlambda.vmul(b.angularFactor, b.wlambda); w.vadd(b.wlambda, w); } // Set the .multiplier property of each equation var l = equations.length; var invDt = 1 / h; while(l--){ equations[l].multiplier = lambda[l] * invDt; } } return iter; }; },{"../math/Quaternion":50,"../math/Vec3":52,"./Solver":69}],69:[function(require,module,exports){ module.exports = Solver; /** * Constraint equation solver base class. * @class Solver * @constructor * @author schteppe / https://github.com/schteppe */ function Solver(){ /** * All equations to be solved * @property {Array} equations */ this.equations = []; } /** * Should be implemented in subclasses! * @method solve * @param {Number} dt * @param {World} world */ Solver.prototype.solve = function(dt,world){ // Should return the number of iterations done! return 0; }; /** * Add an equation * @method addEquation * @param {Equation} eq */ Solver.prototype.addEquation = function(eq){ if (eq.enabled) { this.equations.push(eq); } }; /** * Remove an equation * @method removeEquation * @param {Equation} eq */ Solver.prototype.removeEquation = function(eq){ var eqs = this.equations; var i = eqs.indexOf(eq); if(i !== -1){ eqs.splice(i,1); } }; /** * Add all equations * @method removeAllEquations */ Solver.prototype.removeAllEquations = function(){ this.equations.length = 0; }; },{}],70:[function(require,module,exports){ module.exports = SplitSolver; var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var Solver = require('./Solver'); var Body = require('../objects/Body'); /** * Splits the equations into islands and solves them independently. Can improve performance. * @class SplitSolver * @constructor * @extends Solver * @param {Solver} subsolver */ function SplitSolver(subsolver){ Solver.call(this); this.iterations = 10; this.tolerance = 1e-7; this.subsolver = subsolver; this.nodes = []; this.nodePool = []; // Create needed nodes, reuse if possible while(this.nodePool.length < 128){ this.nodePool.push(this.createNode()); } } SplitSolver.prototype = new Solver(); // Returns the number of subsystems var SplitSolver_solve_nodes = []; // All allocated node objects var SplitSolver_solve_nodePool = []; // All allocated node objects var SplitSolver_solve_eqs = []; // Temp array var SplitSolver_solve_bds = []; // Temp array var SplitSolver_solve_dummyWorld = {bodies:[]}; // Temp object var STATIC = Body.STATIC; function getUnvisitedNode(nodes){ var Nnodes = nodes.length; for(var i=0; i!==Nnodes; i++){ var node = nodes[i]; if(!node.visited && !(node.body.type & STATIC)){ return node; } } return false; } var queue = []; function bfs(root,visitFunc,bds,eqs){ queue.push(root); root.visited = true; visitFunc(root,bds,eqs); while(queue.length) { var node = queue.pop(); // Loop over unvisited child nodes var child; while((child = getUnvisitedNode(node.children))) { child.visited = true; visitFunc(child,bds,eqs); queue.push(child); } } } function visitFunc(node,bds,eqs){ bds.push(node.body); var Neqs = node.eqs.length; for(var i=0; i!==Neqs; i++){ var eq = node.eqs[i]; if(eqs.indexOf(eq) === -1){ eqs.push(eq); } } } SplitSolver.prototype.createNode = function(){ return { body:null, children:[], eqs:[], visited:false }; }; /** * Solve the subsystems * @method solve * @param {Number} dt * @param {World} world */ SplitSolver.prototype.solve = function(dt,world){ var nodes=SplitSolver_solve_nodes, nodePool=this.nodePool, bodies=world.bodies, equations=this.equations, Neq=equations.length, Nbodies=bodies.length, subsolver=this.subsolver; // Create needed nodes, reuse if possible while(nodePool.length < Nbodies){ nodePool.push(this.createNode()); } nodes.length = Nbodies; for (var i = 0; i < Nbodies; i++) { nodes[i] = nodePool[i]; } // Reset node values for(var i=0; i!==Nbodies; i++){ var node = nodes[i]; node.body = bodies[i]; node.children.length = 0; node.eqs.length = 0; node.visited = false; } for(var k=0; k!==Neq; k++){ var eq=equations[k], i=bodies.indexOf(eq.bi), j=bodies.indexOf(eq.bj), ni=nodes[i], nj=nodes[j]; ni.children.push(nj); ni.eqs.push(eq); nj.children.push(ni); nj.eqs.push(eq); } var child, n=0, eqs=SplitSolver_solve_eqs; subsolver.tolerance = this.tolerance; subsolver.iterations = this.iterations; var dummyWorld = SplitSolver_solve_dummyWorld; while((child = getUnvisitedNode(nodes))){ eqs.length = 0; dummyWorld.bodies.length = 0; bfs(child, visitFunc, dummyWorld.bodies, eqs); var Neqs = eqs.length; eqs = eqs.sort(sortById); for(var i=0; i!==Neqs; i++){ subsolver.addEquation(eqs[i]); } var iter = subsolver.solve(dt,dummyWorld); subsolver.removeAllEquations(); n++; } return n; }; function sortById(a, b){ return b.id - a.id; } },{"../math/Quaternion":50,"../math/Vec3":52,"../objects/Body":53,"./Solver":69}],71:[function(require,module,exports){ /** * Base class for objects that dispatches events. * @class EventTarget * @constructor */ var EventTarget = function () { }; module.exports = EventTarget; EventTarget.prototype = { constructor: EventTarget, /** * Add an event listener * @method addEventListener * @param {String} type * @param {Function} listener * @return {EventTarget} The self object, for chainability. */ addEventListener: function ( type, listener ) { if ( this._listeners === undefined ){ this._listeners = {}; } var listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } return this; }, /** * Check if an event listener is added * @method hasEventListener * @param {String} type * @param {Function} listener * @return {Boolean} */ hasEventListener: function ( type, listener ) { if ( this._listeners === undefined ){ return false; } var listeners = this._listeners; if ( listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1 ) { return true; } return false; }, /** * Check if any event listener of the given type is added * @method hasAnyEventListener * @param {String} type * @return {Boolean} */ hasAnyEventListener: function ( type ) { if ( this._listeners === undefined ){ return false; } var listeners = this._listeners; return ( listeners[ type ] !== undefined ); }, /** * Remove an event listener * @method removeEventListener * @param {String} type * @param {Function} listener * @return {EventTarget} The self object, for chainability. */ removeEventListener: function ( type, listener ) { if ( this._listeners === undefined ){ return this; } var listeners = this._listeners; if ( listeners[type] === undefined ){ return this; } var index = listeners[ type ].indexOf( listener ); if ( index !== - 1 ) { listeners[ type ].splice( index, 1 ); } return this; }, /** * Emit an event. * @method dispatchEvent * @param {Object} event * @param {String} event.type * @return {EventTarget} The self object, for chainability. */ dispatchEvent: function ( event ) { if ( this._listeners === undefined ){ return this; } var listeners = this._listeners; var listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; for ( var i = 0, l = listenerArray.length; i < l; i ++ ) { listenerArray[ i ].call( this, event ); } } return this; } }; },{}],72:[function(require,module,exports){ var AABB = require('../collision/AABB'); var Vec3 = require('../math/Vec3'); module.exports = Octree; /** * @class OctreeNode * @param {object} [options] * @param {Octree} [options.root] * @param {AABB} [options.aabb] */ function OctreeNode(options){ options = options || {}; /** * The root node * @property {OctreeNode} root */ this.root = options.root || null; /** * Boundary of this node * @property {AABB} aabb */ this.aabb = options.aabb ? options.aabb.clone() : new AABB(); /** * Contained data at the current node level. * @property {Array} data */ this.data = []; /** * Children to this node * @property {Array} children */ this.children = []; } /** * @class Octree * @param {AABB} aabb The total AABB of the tree * @param {object} [options] * @param {number} [options.maxDepth=8] * @extends OctreeNode */ function Octree(aabb, options){ options = options || {}; options.root = null; options.aabb = aabb; OctreeNode.call(this, options); /** * Maximum subdivision depth * @property {number} maxDepth */ this.maxDepth = typeof(options.maxDepth) !== 'undefined' ? options.maxDepth : 8; } Octree.prototype = new OctreeNode(); OctreeNode.prototype.reset = function(aabb, options){ this.children.length = this.data.length = 0; }; /** * Insert data into this node * @method insert * @param {AABB} aabb * @param {object} elementData * @return {boolean} True if successful, otherwise false */ OctreeNode.prototype.insert = function(aabb, elementData, level){ var nodeData = this.data; level = level || 0; // Ignore objects that do not belong in this node if (!this.aabb.contains(aabb)){ return false; // object cannot be added } var children = this.children; if(level < (this.maxDepth || this.root.maxDepth)){ // Subdivide if there are no children yet var subdivided = false; if (!children.length){ this.subdivide(); subdivided = true; } // add to whichever node will accept it for (var i = 0; i !== 8; i++) { if (children[i].insert(aabb, elementData, level + 1)){ return true; } } if(subdivided){ // No children accepted! Might as well just remove em since they contain none children.length = 0; } } // Too deep, or children didnt want it. add it in current node nodeData.push(elementData); return true; }; var halfDiagonal = new Vec3(); /** * Create 8 equally sized children nodes and put them in the .children array. * @method subdivide */ OctreeNode.prototype.subdivide = function() { var aabb = this.aabb; var l = aabb.lowerBound; var u = aabb.upperBound; var children = this.children; children.push( new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(0,0,0) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(1,0,0) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(1,1,0) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(1,1,1) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(0,1,1) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(0,0,1) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(1,0,1) }) }), new OctreeNode({ aabb: new AABB({ lowerBound: new Vec3(0,1,0) }) }) ); u.vsub(l, halfDiagonal); halfDiagonal.scale(0.5, halfDiagonal); var root = this.root || this; for (var i = 0; i !== 8; i++) { var child = children[i]; // Set current node as root child.root = root; // Compute bounds var lowerBound = child.aabb.lowerBound; lowerBound.x *= halfDiagonal.x; lowerBound.y *= halfDiagonal.y; lowerBound.z *= halfDiagonal.z; lowerBound.vadd(l, lowerBound); // Upper bound is always lower bound + halfDiagonal lowerBound.vadd(halfDiagonal, child.aabb.upperBound); } }; /** * Get all data, potentially within an AABB * @method aabbQuery * @param {AABB} aabb * @param {array} result * @return {array} The "result" object */ OctreeNode.prototype.aabbQuery = function(aabb, result) { var nodeData = this.data; // abort if the range does not intersect this node // if (!this.aabb.overlaps(aabb)){ // return result; // } // Add objects at this level // Array.prototype.push.apply(result, nodeData); // Add child data // @todo unwrap recursion into a queue / loop, that's faster in JS var children = this.children; // for (var i = 0, N = this.children.length; i !== N; i++) { // children[i].aabbQuery(aabb, result); // } var queue = [this]; while (queue.length) { var node = queue.pop(); if (node.aabb.overlaps(aabb)){ Array.prototype.push.apply(result, node.data); } Array.prototype.push.apply(queue, node.children); } return result; }; var tmpAABB = new AABB(); /** * Get all data, potentially intersected by a ray. * @method rayQuery * @param {Ray} ray * @param {Transform} treeTransform * @param {array} result * @return {array} The "result" object */ OctreeNode.prototype.rayQuery = function(ray, treeTransform, result) { // Use aabb query for now. // @todo implement real ray query which needs less lookups ray.getAABB(tmpAABB); tmpAABB.toLocalFrame(treeTransform, tmpAABB); this.aabbQuery(tmpAABB, result); return result; }; /** * @method removeEmptyNodes */ OctreeNode.prototype.removeEmptyNodes = function() { var queue = [this]; while (queue.length) { var node = queue.pop(); for (var i = node.children.length - 1; i >= 0; i--) { if(!node.children[i].data.length){ node.children.splice(i, 1); } } Array.prototype.push.apply(queue, node.children); } }; },{"../collision/AABB":24,"../math/Vec3":52}],73:[function(require,module,exports){ module.exports = Pool; /** * For pooling objects that can be reused. * @class Pool * @constructor */ function Pool(){ /** * The pooled objects * @property {Array} objects */ this.objects = []; /** * Constructor of the objects * @property {mixed} type */ this.type = Object; } /** * Release an object after use * @method release * @param {Object} obj */ Pool.prototype.release = function(){ var Nargs = arguments.length; for(var i=0; i!==Nargs; i++){ this.objects.push(arguments[i]); } return this; }; /** * Get an object * @method get * @return {mixed} */ Pool.prototype.get = function(){ if(this.objects.length===0){ return this.constructObject(); } else { return this.objects.pop(); } }; /** * Construct an object. Should be implmented in each subclass. * @method constructObject * @return {mixed} */ Pool.prototype.constructObject = function(){ throw new Error("constructObject() not implemented in this Pool subclass yet!"); }; /** * @method resize * @param {number} size * @return {Pool} Self, for chaining */ Pool.prototype.resize = function (size) { var objects = this.objects; while (objects.length > size) { objects.pop(); } while (objects.length < size) { objects.push(this.constructObject()); } return this; }; },{}],74:[function(require,module,exports){ module.exports = TupleDictionary; /** * @class TupleDictionary * @constructor */ function TupleDictionary() { /** * The data storage * @property data * @type {Object} */ this.data = { keys:[] }; } /** * @method get * @param {Number} i * @param {Number} j * @return {Number} */ TupleDictionary.prototype.get = function(i, j) { if (i > j) { // swap var temp = j; j = i; i = temp; } return this.data[i+'-'+j]; }; /** * @method set * @param {Number} i * @param {Number} j * @param {Number} value */ TupleDictionary.prototype.set = function(i, j, value) { if (i > j) { var temp = j; j = i; i = temp; } var key = i+'-'+j; // Check if key already exists if(!this.get(i,j)){ this.data.keys.push(key); } this.data[key] = value; }; /** * @method reset */ TupleDictionary.prototype.reset = function() { var data = this.data, keys = data.keys; while(keys.length > 0){ var key = keys.pop(); delete data[key]; } }; },{}],75:[function(require,module,exports){ function Utils(){} module.exports = Utils; /** * Extend an options object with default values. * @static * @method defaults * @param {object} options The options object. May be falsy: in this case, a new object is created and returned. * @param {object} defaults An object containing default values. * @return {object} The modified options object. */ Utils.defaults = function(options, defaults){ options = options || {}; for(var key in defaults){ if(!(key in options)){ options[key] = defaults[key]; } } return options; }; },{}],76:[function(require,module,exports){ module.exports = Vec3Pool; var Vec3 = require('../math/Vec3'); var Pool = require('./Pool'); /** * @class Vec3Pool * @constructor * @extends Pool */ function Vec3Pool(){ Pool.call(this); this.type = Vec3; } Vec3Pool.prototype = new Pool(); /** * Construct a vector * @method constructObject * @return {Vec3} */ Vec3Pool.prototype.constructObject = function(){ return new Vec3(); }; },{"../math/Vec3":52,"./Pool":73}],77:[function(require,module,exports){ module.exports = Narrowphase; var AABB = require('../collision/AABB'); var Body = require('../objects/Body'); var Shape = require('../shapes/Shape'); var Ray = require('../collision/Ray'); var Vec3 = require('../math/Vec3'); var Transform = require('../math/Transform'); var ConvexPolyhedron = require('../shapes/ConvexPolyhedron'); var Quaternion = require('../math/Quaternion'); var Solver = require('../solver/Solver'); var Vec3Pool = require('../utils/Vec3Pool'); var ContactEquation = require('../equations/ContactEquation'); var FrictionEquation = require('../equations/FrictionEquation'); /** * Helper class for the World. Generates ContactEquations. * @class Narrowphase * @constructor * @todo Sphere-ConvexPolyhedron contacts * @todo Contact reduction * @todo should move methods to prototype */ function Narrowphase(world){ /** * Internal storage of pooled contact points. * @property {Array} contactPointPool */ this.contactPointPool = []; this.frictionEquationPool = []; this.result = []; this.frictionResult = []; /** * Pooled vectors. * @property {Vec3Pool} v3pool */ this.v3pool = new Vec3Pool(); this.world = world; this.currentContactMaterial = null; /** * @property {Boolean} enableFrictionReduction */ this.enableFrictionReduction = false; } /** * Make a contact object, by using the internal pool or creating a new one. * @method createContactEquation * @param {Body} bi * @param {Body} bj * @param {Shape} si * @param {Shape} sj * @param {Shape} overrideShapeA * @param {Shape} overrideShapeB * @return {ContactEquation} */ Narrowphase.prototype.createContactEquation = function(bi, bj, si, sj, overrideShapeA, overrideShapeB){ var c; if(this.contactPointPool.length){ c = this.contactPointPool.pop(); c.bi = bi; c.bj = bj; } else { c = new ContactEquation(bi, bj); } c.enabled = bi.collisionResponse && bj.collisionResponse && si.collisionResponse && sj.collisionResponse; var cm = this.currentContactMaterial; c.restitution = cm.restitution; c.setSpookParams( cm.contactEquationStiffness, cm.contactEquationRelaxation, this.world.dt ); var matA = si.material || bi.material; var matB = sj.material || bj.material; if(matA && matB && matA.restitution >= 0 && matB.restitution >= 0){ c.restitution = matA.restitution * matB.restitution; } c.si = overrideShapeA || si; c.sj = overrideShapeB || sj; return c; }; Narrowphase.prototype.createFrictionEquationsFromContact = function(contactEquation, outArray){ var bodyA = contactEquation.bi; var bodyB = contactEquation.bj; var shapeA = contactEquation.si; var shapeB = contactEquation.sj; var world = this.world; var cm = this.currentContactMaterial; // If friction or restitution were specified in the material, use them var friction = cm.friction; var matA = shapeA.material || bodyA.material; var matB = shapeB.material || bodyB.material; if(matA && matB && matA.friction >= 0 && matB.friction >= 0){ friction = matA.friction * matB.friction; } if(friction > 0){ // Create 2 tangent equations var mug = friction * world.gravity.length(); var reducedMass = (bodyA.invMass + bodyB.invMass); if(reducedMass > 0){ reducedMass = 1/reducedMass; } var pool = this.frictionEquationPool; var c1 = pool.length ? pool.pop() : new FrictionEquation(bodyA,bodyB,mug*reducedMass); var c2 = pool.length ? pool.pop() : new FrictionEquation(bodyA,bodyB,mug*reducedMass); c1.bi = c2.bi = bodyA; c1.bj = c2.bj = bodyB; c1.minForce = c2.minForce = -mug*reducedMass; c1.maxForce = c2.maxForce = mug*reducedMass; // Copy over the relative vectors c1.ri.copy(contactEquation.ri); c1.rj.copy(contactEquation.rj); c2.ri.copy(contactEquation.ri); c2.rj.copy(contactEquation.rj); // Construct tangents contactEquation.ni.tangents(c1.t, c2.t); // Set spook params c1.setSpookParams(cm.frictionEquationStiffness, cm.frictionEquationRelaxation, world.dt); c2.setSpookParams(cm.frictionEquationStiffness, cm.frictionEquationRelaxation, world.dt); c1.enabled = c2.enabled = contactEquation.enabled; outArray.push(c1, c2); return true; } return false; }; var averageNormal = new Vec3(); var averageContactPointA = new Vec3(); var averageContactPointB = new Vec3(); // Take the average N latest contact point on the plane. Narrowphase.prototype.createFrictionFromAverage = function(numContacts){ // The last contactEquation var c = this.result[this.result.length - 1]; // Create the result: two "average" friction equations if (!this.createFrictionEquationsFromContact(c, this.frictionResult) || numContacts === 1) { return; } var f1 = this.frictionResult[this.frictionResult.length - 2]; var f2 = this.frictionResult[this.frictionResult.length - 1]; averageNormal.setZero(); averageContactPointA.setZero(); averageContactPointB.setZero(); var bodyA = c.bi; var bodyB = c.bj; for(var i=0; i!==numContacts; i++){ c = this.result[this.result.length - 1 - i]; if(c.bodyA !== bodyA){ averageNormal.vadd(c.ni, averageNormal); averageContactPointA.vadd(c.ri, averageContactPointA); averageContactPointB.vadd(c.rj, averageContactPointB); } else { averageNormal.vsub(c.ni, averageNormal); averageContactPointA.vadd(c.rj, averageContactPointA); averageContactPointB.vadd(c.ri, averageContactPointB); } } var invNumContacts = 1 / numContacts; averageContactPointA.scale(invNumContacts, f1.ri); averageContactPointB.scale(invNumContacts, f1.rj); f2.ri.copy(f1.ri); // Should be the same f2.rj.copy(f1.rj); averageNormal.normalize(); averageNormal.tangents(f1.t, f2.t); // return eq; }; var tmpVec1 = new Vec3(); var tmpVec2 = new Vec3(); var tmpQuat1 = new Quaternion(); var tmpQuat2 = new Quaternion(); /** * Generate all contacts between a list of body pairs * @method getContacts * @param {array} p1 Array of body indices * @param {array} p2 Array of body indices * @param {World} world * @param {array} result Array to store generated contacts * @param {array} oldcontacts Optional. Array of reusable contact objects */ Narrowphase.prototype.getContacts = function(p1, p2, world, result, oldcontacts, frictionResult, frictionPool){ // Save old contact objects this.contactPointPool = oldcontacts; this.frictionEquationPool = frictionPool; this.result = result; this.frictionResult = frictionResult; var qi = tmpQuat1; var qj = tmpQuat2; var xi = tmpVec1; var xj = tmpVec2; for(var k=0, N=p1.length; k!==N; k++){ // Get current collision bodies var bi = p1[k], bj = p2[k]; // Get contact material var bodyContactMaterial = null; if(bi.material && bj.material){ bodyContactMaterial = world.getContactMaterial(bi.material,bj.material) || null; } var justTest = ( ( (bi.type & Body.KINEMATIC) && (bj.type & Body.STATIC) ) || ( (bi.type & Body.STATIC) && (bj.type & Body.KINEMATIC) ) || ( (bi.type & Body.KINEMATIC) && (bj.type & Body.KINEMATIC) ) ); for (var i = 0; i < bi.shapes.length; i++) { bi.quaternion.mult(bi.shapeOrientations[i], qi); bi.quaternion.vmult(bi.shapeOffsets[i], xi); xi.vadd(bi.position, xi); var si = bi.shapes[i]; for (var j = 0; j < bj.shapes.length; j++) { // Compute world transform of shapes bj.quaternion.mult(bj.shapeOrientations[j], qj); bj.quaternion.vmult(bj.shapeOffsets[j], xj); xj.vadd(bj.position, xj); var sj = bj.shapes[j]; if(xi.distanceTo(xj) > si.boundingSphereRadius + sj.boundingSphereRadius){ continue; } // Get collision material var shapeContactMaterial = null; if(si.material && sj.material){ shapeContactMaterial = world.getContactMaterial(si.material,sj.material) || null; } this.currentContactMaterial = shapeContactMaterial || bodyContactMaterial || world.defaultContactMaterial; // Get contacts var resolver = this[si.type | sj.type]; if(resolver){ var retval = false; if (si.type < sj.type) { retval = resolver.call(this, si, sj, xi, xj, qi, qj, bi, bj, si, sj, justTest); } else { retval = resolver.call(this, sj, si, xj, xi, qj, qi, bj, bi, si, sj, justTest); } if(retval && justTest){ // Register overlap world.shapeOverlapKeeper.set(si.id, sj.id); world.bodyOverlapKeeper.set(bi.id, bj.id); } } } } } }; var numWarnings = 0; var maxWarnings = 10; function warn(msg){ if(numWarnings > maxWarnings){ return; } numWarnings++; console.warn(msg); } Narrowphase.prototype[Shape.types.BOX | Shape.types.BOX] = Narrowphase.prototype.boxBox = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,justTest){ si.convexPolyhedronRepresentation.material = si.material; sj.convexPolyhedronRepresentation.material = sj.material; si.convexPolyhedronRepresentation.collisionResponse = si.collisionResponse; sj.convexPolyhedronRepresentation.collisionResponse = sj.collisionResponse; return this.convexConvex(si.convexPolyhedronRepresentation,sj.convexPolyhedronRepresentation,xi,xj,qi,qj,bi,bj,si,sj,justTest); }; Narrowphase.prototype[Shape.types.BOX | Shape.types.CONVEXPOLYHEDRON] = Narrowphase.prototype.boxConvex = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,justTest){ si.convexPolyhedronRepresentation.material = si.material; si.convexPolyhedronRepresentation.collisionResponse = si.collisionResponse; return this.convexConvex(si.convexPolyhedronRepresentation,sj,xi,xj,qi,qj,bi,bj,si,sj,justTest); }; Narrowphase.prototype[Shape.types.BOX | Shape.types.PARTICLE] = Narrowphase.prototype.boxParticle = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,justTest){ si.convexPolyhedronRepresentation.material = si.material; si.convexPolyhedronRepresentation.collisionResponse = si.collisionResponse; return this.convexParticle(si.convexPolyhedronRepresentation,sj,xi,xj,qi,qj,bi,bj,si,sj,justTest); }; /** * @method sphereSphere * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ Narrowphase.prototype[Shape.types.SPHERE] = Narrowphase.prototype.sphereSphere = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,justTest){ if(justTest){ return xi.distanceSquared(xj) < Math.pow(si.radius + sj.radius, 2); } // We will have only one contact in this case var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); // Contact normal xj.vsub(xi, r.ni); r.ni.normalize(); // Contact point locations r.ri.copy(r.ni); r.rj.copy(r.ni); r.ri.mult(si.radius, r.ri); r.rj.mult(-sj.radius, r.rj); r.ri.vadd(xi, r.ri); r.ri.vsub(bi.position, r.ri); r.rj.vadd(xj, r.rj); r.rj.vsub(bj.position, r.rj); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); }; /** * @method planeTrimesh * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ var planeTrimesh_normal = new Vec3(); var planeTrimesh_relpos = new Vec3(); var planeTrimesh_projected = new Vec3(); Narrowphase.prototype[Shape.types.PLANE | Shape.types.TRIMESH] = Narrowphase.prototype.planeTrimesh = function( planeShape, trimeshShape, planePos, trimeshPos, planeQuat, trimeshQuat, planeBody, trimeshBody, rsi, rsj, justTest ){ // Make contacts! var v = new Vec3(); var normal = planeTrimesh_normal; normal.set(0,0,1); planeQuat.vmult(normal,normal); // Turn normal according to plane for(var i=0; i 0 && positionAlongEdgeB < 0){ // Now check the orthogonal distance from edge to sphere center localSpherePos.vsub(edgeVertexA, tmp); edgeVectorUnit.copy(edgeVector); edgeVectorUnit.normalize(); positionAlongEdgeA = tmp.dot(edgeVectorUnit); edgeVectorUnit.scale(positionAlongEdgeA, tmp); tmp.vadd(edgeVertexA, tmp); // tmp is now the sphere center position projected to the edge, defined locally in the trimesh frame var dist = tmp.distanceTo(localSpherePos); if(dist < sphereShape.radius){ if(justTest){ return true; } var r = this.createContactEquation(sphereBody, trimeshBody, sphereShape, trimeshShape,rsi,rsj); tmp.vsub(localSpherePos, r.ni); r.ni.normalize(); r.ni.scale(sphereShape.radius, r.ri); Transform.pointToWorldFrame(trimeshPos, trimeshQuat, tmp, tmp); tmp.vsub(trimeshBody.position, r.rj); Transform.vectorToWorldFrame(trimeshQuat, r.ni, r.ni); Transform.vectorToWorldFrame(trimeshQuat, r.ri, r.ri); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } } } } // Triangle faces var va = sphereTrimesh_va; var vb = sphereTrimesh_vb; var vc = sphereTrimesh_vc; var normal = sphereTrimesh_normal; for(var i=0, N = triangles.length; i !== N; i++){ trimeshShape.getTriangleVertices(triangles[i], va, vb, vc); trimeshShape.getNormal(triangles[i], normal); localSpherePos.vsub(va, tmp); var dist = tmp.dot(normal); normal.scale(dist, tmp); localSpherePos.vsub(tmp, tmp); // tmp is now the sphere position projected to the triangle plane dist = tmp.distanceTo(localSpherePos); if(Ray.pointInTriangle(tmp, va, vb, vc) && dist < sphereShape.radius){ if(justTest){ return true; } var r = this.createContactEquation(sphereBody, trimeshBody, sphereShape, trimeshShape,rsi,rsj); tmp.vsub(localSpherePos, r.ni); r.ni.normalize(); r.ni.scale(sphereShape.radius, r.ri); Transform.pointToWorldFrame(trimeshPos, trimeshQuat, tmp, tmp); tmp.vsub(trimeshBody.position, r.rj); Transform.vectorToWorldFrame(trimeshQuat, r.ni, r.ni); Transform.vectorToWorldFrame(trimeshQuat, r.ri, r.ri); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } } triangles.length = 0; }; var point_on_plane_to_sphere = new Vec3(); var plane_to_sphere_ortho = new Vec3(); /** * @method spherePlane * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ Narrowphase.prototype[Shape.types.SPHERE | Shape.types.PLANE] = Narrowphase.prototype.spherePlane = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,justTest){ // We will have one contact in this case var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); // Contact normal r.ni.set(0,0,1); qj.vmult(r.ni, r.ni); r.ni.negate(r.ni); // body i is the sphere, flip normal r.ni.normalize(); // Needed? // Vector from sphere center to contact point r.ni.mult(si.radius, r.ri); // Project down sphere on plane xi.vsub(xj, point_on_plane_to_sphere); r.ni.mult(r.ni.dot(point_on_plane_to_sphere), plane_to_sphere_ortho); point_on_plane_to_sphere.vsub(plane_to_sphere_ortho,r.rj); // The sphere position projected to plane if(-point_on_plane_to_sphere.dot(r.ni) <= si.radius){ if(justTest){ return true; } // Make it relative to the body var ri = r.ri; var rj = r.rj; ri.vadd(xi, ri); ri.vsub(bi.position, ri); rj.vadd(xj, rj); rj.vsub(bj.position, rj); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } }; // See http://bulletphysics.com/Bullet/BulletFull/SphereTriangleDetector_8cpp_source.html var pointInPolygon_edge = new Vec3(); var pointInPolygon_edge_x_normal = new Vec3(); var pointInPolygon_vtp = new Vec3(); function pointInPolygon(verts, normal, p){ var positiveResult = null; var N = verts.length; for(var i=0; i!==N; i++){ var v = verts[i]; // Get edge to the next vertex var edge = pointInPolygon_edge; verts[(i+1) % (N)].vsub(v,edge); // Get cross product between polygon normal and the edge var edge_x_normal = pointInPolygon_edge_x_normal; //var edge_x_normal = new Vec3(); edge.cross(normal,edge_x_normal); // Get vector between point and current vertex var vertex_to_p = pointInPolygon_vtp; p.vsub(v,vertex_to_p); // This dot product determines which side of the edge the point is var r = edge_x_normal.dot(vertex_to_p); // If all such dot products have same sign, we are inside the polygon. if(positiveResult===null || (r>0 && positiveResult===true) || (r<=0 && positiveResult===false)){ if(positiveResult===null){ positiveResult = r>0; } continue; } else { return false; // Encountered some other sign. Exit. } } // If we got here, all dot products were of the same sign. return true; } var box_to_sphere = new Vec3(); var sphereBox_ns = new Vec3(); var sphereBox_ns1 = new Vec3(); var sphereBox_ns2 = new Vec3(); var sphereBox_sides = [new Vec3(),new Vec3(),new Vec3(),new Vec3(),new Vec3(),new Vec3()]; var sphereBox_sphere_to_corner = new Vec3(); var sphereBox_side_ns = new Vec3(); var sphereBox_side_ns1 = new Vec3(); var sphereBox_side_ns2 = new Vec3(); /** * @method sphereBox * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ Narrowphase.prototype[Shape.types.SPHERE | Shape.types.BOX] = Narrowphase.prototype.sphereBox = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,justTest){ var v3pool = this.v3pool; // we refer to the box as body j var sides = sphereBox_sides; xi.vsub(xj,box_to_sphere); sj.getSideNormals(sides,qj); var R = si.radius; var penetrating_sides = []; // Check side (plane) intersections var found = false; // Store the resulting side penetration info var side_ns = sphereBox_side_ns; var side_ns1 = sphereBox_side_ns1; var side_ns2 = sphereBox_side_ns2; var side_h = null; var side_penetrations = 0; var side_dot1 = 0; var side_dot2 = 0; var side_distance = null; for(var idx=0,nsides=sides.length; idx!==nsides && found===false; idx++){ // Get the plane side normal (ns) var ns = sphereBox_ns; ns.copy(sides[idx]); var h = ns.norm(); ns.normalize(); // The normal/distance dot product tells which side of the plane we are var dot = box_to_sphere.dot(ns); if(dot0){ // Intersects plane. Now check the other two dimensions var ns1 = sphereBox_ns1; var ns2 = sphereBox_ns2; ns1.copy(sides[(idx+1)%3]); ns2.copy(sides[(idx+2)%3]); var h1 = ns1.norm(); var h2 = ns2.norm(); ns1.normalize(); ns2.normalize(); var dot1 = box_to_sphere.dot(ns1); var dot2 = box_to_sphere.dot(ns2); if(dot1

-h1 && dot2

-h2){ var dist = Math.abs(dot-h-R); if(side_distance===null || dist < side_distance){ side_distance = dist; side_dot1 = dot1; side_dot2 = dot2; side_h = h; side_ns.copy(ns); side_ns1.copy(ns1); side_ns2.copy(ns2); side_penetrations++; if(justTest){ return true; } } } } } if(side_penetrations){ found = true; var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); side_ns.mult(-R,r.ri); // Sphere r r.ni.copy(side_ns); r.ni.negate(r.ni); // Normal should be out of sphere side_ns.mult(side_h,side_ns); side_ns1.mult(side_dot1,side_ns1); side_ns.vadd(side_ns1,side_ns); side_ns2.mult(side_dot2,side_ns2); side_ns.vadd(side_ns2,r.rj); // Make relative to bodies r.ri.vadd(xi, r.ri); r.ri.vsub(bi.position, r.ri); r.rj.vadd(xj, r.rj); r.rj.vsub(bj.position, r.rj); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } // Check corners var rj = v3pool.get(); var sphere_to_corner = sphereBox_sphere_to_corner; for(var j=0; j!==2 && !found; j++){ for(var k=0; k!==2 && !found; k++){ for(var l=0; l!==2 && !found; l++){ rj.set(0,0,0); if(j){ rj.vadd(sides[0],rj); } else { rj.vsub(sides[0],rj); } if(k){ rj.vadd(sides[1],rj); } else { rj.vsub(sides[1],rj); } if(l){ rj.vadd(sides[2],rj); } else { rj.vsub(sides[2],rj); } // World position of corner xj.vadd(rj,sphere_to_corner); sphere_to_corner.vsub(xi,sphere_to_corner); if(sphere_to_corner.norm2() < R*R){ if(justTest){ return true; } found = true; var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); r.ri.copy(sphere_to_corner); r.ri.normalize(); r.ni.copy(r.ri); r.ri.mult(R,r.ri); r.rj.copy(rj); // Make relative to bodies r.ri.vadd(xi, r.ri); r.ri.vsub(bi.position, r.ri); r.rj.vadd(xj, r.rj); r.rj.vsub(bj.position, r.rj); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } } } } v3pool.release(rj); rj = null; // Check edges var edgeTangent = v3pool.get(); var edgeCenter = v3pool.get(); var r = v3pool.get(); // r = edge center to sphere center var orthogonal = v3pool.get(); var dist = v3pool.get(); var Nsides = sides.length; for(var j=0; j!==Nsides && !found; j++){ for(var k=0; k!==Nsides && !found; k++){ if(j%3 !== k%3){ // Get edge tangent sides[k].cross(sides[j],edgeTangent); edgeTangent.normalize(); sides[j].vadd(sides[k], edgeCenter); r.copy(xi); r.vsub(edgeCenter,r); r.vsub(xj,r); var orthonorm = r.dot(edgeTangent); // distance from edge center to sphere center in the tangent direction edgeTangent.mult(orthonorm,orthogonal); // Vector from edge center to sphere center in the tangent direction // Find the third side orthogonal to this one var l = 0; while(l===j%3 || l===k%3){ l++; } // vec from edge center to sphere projected to the plane orthogonal to the edge tangent dist.copy(xi); dist.vsub(orthogonal,dist); dist.vsub(edgeCenter,dist); dist.vsub(xj,dist); // Distances in tangent direction and distance in the plane orthogonal to it var tdist = Math.abs(orthonorm); var ndist = dist.norm(); if(tdist < sides[l].norm() && ndist si.boundingSphereRadius + sj.boundingSphereRadius){ // return; // } // Check corners for(var i=0; i!==verts.length; i++){ var v = verts[i]; // World position of corner var worldCorner = sphereConvex_worldCorner; qj.vmult(v,worldCorner); xj.vadd(worldCorner,worldCorner); var sphere_to_corner = sphereConvex_sphereToCorner; worldCorner.vsub(xi, sphere_to_corner); if(sphere_to_corner.norm2() < R * R){ if(justTest){ return true; } found = true; var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); r.ri.copy(sphere_to_corner); r.ri.normalize(); r.ni.copy(r.ri); r.ri.mult(R,r.ri); worldCorner.vsub(xj,r.rj); // Should be relative to the body. r.ri.vadd(xi, r.ri); r.ri.vsub(bi.position, r.ri); // Should be relative to the body. r.rj.vadd(xj, r.rj); r.rj.vsub(bj.position, r.rj); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); return; } } // Check side (plane) intersections var found = false; for(var i=0, nfaces=faces.length; i!==nfaces && found===false; i++){ var normal = normals[i]; var face = faces[i]; // Get world-transformed normal of the face var worldNormal = sphereConvex_worldNormal; qj.vmult(normal,worldNormal); // Get a world vertex from the face var worldPoint = sphereConvex_worldPoint; qj.vmult(verts[face[0]],worldPoint); worldPoint.vadd(xj,worldPoint); // Get a point on the sphere, closest to the face normal var worldSpherePointClosestToPlane = sphereConvex_worldSpherePointClosestToPlane; worldNormal.mult(-R, worldSpherePointClosestToPlane); xi.vadd(worldSpherePointClosestToPlane, worldSpherePointClosestToPlane); // Vector from a face point to the closest point on the sphere var penetrationVec = sphereConvex_penetrationVec; worldSpherePointClosestToPlane.vsub(worldPoint,penetrationVec); // The penetration. Negative value means overlap. var penetration = penetrationVec.dot(worldNormal); var worldPointToSphere = sphereConvex_sphereToWorldPoint; xi.vsub(worldPoint, worldPointToSphere); if(penetration < 0 && worldPointToSphere.dot(worldNormal)>0){ // Intersects plane. Now check if the sphere is inside the face polygon var faceVerts = []; // Face vertices, in world coords for(var j=0, Nverts=face.length; j!==Nverts; j++){ var worldVertex = v3pool.get(); qj.vmult(verts[face[j]], worldVertex); xj.vadd(worldVertex,worldVertex); faceVerts.push(worldVertex); } if(pointInPolygon(faceVerts,worldNormal,xi)){ // Is the sphere center in the face polygon? if(justTest){ return true; } found = true; var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); worldNormal.mult(-R, r.ri); // Contact offset, from sphere center to contact worldNormal.negate(r.ni); // Normal pointing out of sphere var penetrationVec2 = v3pool.get(); worldNormal.mult(-penetration, penetrationVec2); var penetrationSpherePoint = v3pool.get(); worldNormal.mult(-R, penetrationSpherePoint); //xi.vsub(xj).vadd(penetrationSpherePoint).vadd(penetrationVec2 , r.rj); xi.vsub(xj,r.rj); r.rj.vadd(penetrationSpherePoint,r.rj); r.rj.vadd(penetrationVec2 , r.rj); // Should be relative to the body. r.rj.vadd(xj, r.rj); r.rj.vsub(bj.position, r.rj); // Should be relative to the body. r.ri.vadd(xi, r.ri); r.ri.vsub(bi.position, r.ri); v3pool.release(penetrationVec2); v3pool.release(penetrationSpherePoint); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); // Release world vertices for(var j=0, Nfaceverts=faceVerts.length; j!==Nfaceverts; j++){ v3pool.release(faceVerts[j]); } return; // We only expect *one* face contact } else { // Edge? for(var j=0; j!==face.length; j++){ // Get two world transformed vertices var v1 = v3pool.get(); var v2 = v3pool.get(); qj.vmult(verts[face[(j+1)%face.length]], v1); qj.vmult(verts[face[(j+2)%face.length]], v2); xj.vadd(v1, v1); xj.vadd(v2, v2); // Construct edge vector var edge = sphereConvex_edge; v2.vsub(v1,edge); // Construct the same vector, but normalized var edgeUnit = sphereConvex_edgeUnit; edge.unit(edgeUnit); // p is xi projected onto the edge var p = v3pool.get(); var v1_to_xi = v3pool.get(); xi.vsub(v1, v1_to_xi); var dot = v1_to_xi.dot(edgeUnit); edgeUnit.mult(dot, p); p.vadd(v1, p); // Compute a vector from p to the center of the sphere var xi_to_p = v3pool.get(); p.vsub(xi, xi_to_p); // Collision if the edge-sphere distance is less than the radius // AND if p is in between v1 and v2 if(dot > 0 && dot*dot si.boundingSphereRadius + sj.boundingSphereRadius){ return; } if(si.findSeparatingAxis(sj,xi,qi,xj,qj,sepAxis,faceListA,faceListB)){ var res = []; var q = convexConvex_q; si.clipAgainstHull(xi,qi,sj,xj,qj,sepAxis,-100,100,res); var numContacts = 0; for(var j = 0; j !== res.length; j++){ if(justTest){ return true; } var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj), ri = r.ri, rj = r.rj; sepAxis.negate(r.ni); res[j].normal.negate(q); q.mult(res[j].depth, q); res[j].point.vadd(q, ri); rj.copy(res[j].point); // Contact points are in world coordinates. Transform back to relative ri.vsub(xi,ri); rj.vsub(xj,rj); // Make relative to bodies ri.vadd(xi, ri); ri.vsub(bi.position, ri); rj.vadd(xj, rj); rj.vsub(bj.position, rj); this.result.push(r); numContacts++; if(!this.enableFrictionReduction){ this.createFrictionEquationsFromContact(r, this.frictionResult); } } if(this.enableFrictionReduction && numContacts){ this.createFrictionFromAverage(numContacts); } } }; /** * @method convexTrimesh * @param {Array} result * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ // Narrowphase.prototype[Shape.types.CONVEXPOLYHEDRON | Shape.types.TRIMESH] = // Narrowphase.prototype.convexTrimesh = function(si,sj,xi,xj,qi,qj,bi,bj,rsi,rsj,faceListA,faceListB){ // var sepAxis = convexConvex_sepAxis; // if(xi.distanceTo(xj) > si.boundingSphereRadius + sj.boundingSphereRadius){ // return; // } // // Construct a temp hull for each triangle // var hullB = new ConvexPolyhedron(); // hullB.faces = [[0,1,2]]; // var va = new Vec3(); // var vb = new Vec3(); // var vc = new Vec3(); // hullB.vertices = [ // va, // vb, // vc // ]; // for (var i = 0; i < sj.indices.length / 3; i++) { // var triangleNormal = new Vec3(); // sj.getNormal(i, triangleNormal); // hullB.faceNormals = [triangleNormal]; // sj.getTriangleVertices(i, va, vb, vc); // var d = si.testSepAxis(triangleNormal, hullB, xi, qi, xj, qj); // if(!d){ // triangleNormal.scale(-1, triangleNormal); // d = si.testSepAxis(triangleNormal, hullB, xi, qi, xj, qj); // if(!d){ // continue; // } // } // var res = []; // var q = convexConvex_q; // si.clipAgainstHull(xi,qi,hullB,xj,qj,triangleNormal,-100,100,res); // for(var j = 0; j !== res.length; j++){ // var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj), // ri = r.ri, // rj = r.rj; // r.ni.copy(triangleNormal); // r.ni.negate(r.ni); // res[j].normal.negate(q); // q.mult(res[j].depth, q); // res[j].point.vadd(q, ri); // rj.copy(res[j].point); // // Contact points are in world coordinates. Transform back to relative // ri.vsub(xi,ri); // rj.vsub(xj,rj); // // Make relative to bodies // ri.vadd(xi, ri); // ri.vsub(bi.position, ri); // rj.vadd(xj, rj); // rj.vsub(bj.position, rj); // result.push(r); // } // } // }; var particlePlane_normal = new Vec3(); var particlePlane_relpos = new Vec3(); var particlePlane_projected = new Vec3(); /** * @method particlePlane * @param {Array} result * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ Narrowphase.prototype[Shape.types.PLANE | Shape.types.PARTICLE] = Narrowphase.prototype.planeParticle = function(sj,si,xj,xi,qj,qi,bj,bi,rsi,rsj,justTest){ var normal = particlePlane_normal; normal.set(0,0,1); bj.quaternion.vmult(normal,normal); // Turn normal according to plane orientation var relpos = particlePlane_relpos; xi.vsub(bj.position,relpos); var dot = normal.dot(relpos); if(dot <= 0.0){ if(justTest){ return true; } var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); r.ni.copy(normal); // Contact normal is the plane normal r.ni.negate(r.ni); r.ri.set(0,0,0); // Center of particle // Get particle position projected on plane var projected = particlePlane_projected; normal.mult(normal.dot(xi),projected); xi.vsub(projected,projected); //projected.vadd(bj.position,projected); // rj is now the projected world position minus plane position r.rj.copy(projected); this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } }; var particleSphere_normal = new Vec3(); /** * @method particleSphere * @param {Array} result * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ Narrowphase.prototype[Shape.types.PARTICLE | Shape.types.SPHERE] = Narrowphase.prototype.sphereParticle = function(sj,si,xj,xi,qj,qi,bj,bi,rsi,rsj,justTest){ // The normal is the unit vector from sphere center to particle center var normal = particleSphere_normal; normal.set(0,0,1); xi.vsub(xj,normal); var lengthSquared = normal.norm2(); if(lengthSquared <= sj.radius * sj.radius){ if(justTest){ return true; } var r = this.createContactEquation(bi,bj,si,sj,rsi,rsj); normal.normalize(); r.rj.copy(normal); r.rj.mult(sj.radius,r.rj); r.ni.copy(normal); // Contact normal r.ni.negate(r.ni); r.ri.set(0,0,0); // Center of particle this.result.push(r); this.createFrictionEquationsFromContact(r, this.frictionResult); } }; // WIP var cqj = new Quaternion(); var convexParticle_local = new Vec3(); var convexParticle_normal = new Vec3(); var convexParticle_penetratedFaceNormal = new Vec3(); var convexParticle_vertexToParticle = new Vec3(); var convexParticle_worldPenetrationVec = new Vec3(); /** * @method convexParticle * @param {Array} result * @param {Shape} si * @param {Shape} sj * @param {Vec3} xi * @param {Vec3} xj * @param {Quaternion} qi * @param {Quaternion} qj * @param {Body} bi * @param {Body} bj */ Narrowphase.prototype[Shape.types.PARTICLE | Shape.types.CONVEXPOLYHEDRON] = Narrowphase.prototype.convexParticle = function(sj,si,xj,xi,qj,qi,bj,bi,rsi,rsj,justTest){ var penetratedFaceIndex = -1; var penetratedFaceNormal = convexParticle_penetratedFaceNormal; var worldPenetrationVec = convexParticle_worldPenetrationVec; var minPenetration = null; var numDetectedFaces = 0; // Convert particle position xi to local coords in the convex var local = convexParticle_local; local.copy(xi); local.vsub(xj,local); // Convert position to relative the convex origin qj.conjugate(cqj); cqj.vmult(local,local); if(sj.pointIsInside(local)){ if(sj.worldVerticesNeedsUpdate){ sj.computeWorldVertices(xj,qj); } if(sj.worldFaceNormalsNeedsUpdate){ sj.computeWorldFaceNormals(qj); } // For each world polygon in the polyhedra for(var i=0,nfaces=sj.faces.length; i!==nfaces; i++){ // Construct world face vertices var verts = [ sj.worldVertices[ sj.faces[i][0] ] ]; var normal = sj.worldFaceNormals[i]; // Check how much the particle penetrates the polygon plane. xi.vsub(verts[0],convexParticle_vertexToParticle); var penetration = -normal.dot(convexParticle_vertexToParticle); if(minPenetration===null || Math.abs(penetration) data.length || iMinY > data[0].length){ return; } // Clamp index to edges if(iMinX < 0){ iMinX = 0; } if(iMaxX < 0){ iMaxX = 0; } if(iMinY < 0){ iMinY = 0; } if(iMaxY < 0){ iMaxY = 0; } if(iMinX >= data.length){ iMinX = data.length - 1; } if(iMaxX >= data.length){ iMaxX = data.length - 1; } if(iMaxY >= data[0].length){ iMaxY = data[0].length - 1; } if(iMinY >= data[0].length){ iMinY = data[0].length - 1; } var minMax = []; hfShape.getRectMinMax(iMinX, iMinY, iMaxX, iMaxY, minMax); var min = minMax[0]; var max = minMax[1]; // Bail out if we're cant touch the bounding height box if(localConvexPos.z - radius > max || localConvexPos.z + radius < min){ return; } for(var i = iMinX; i < iMaxX; i++){ for(var j = iMinY; j < iMaxY; j++){ var intersecting = false; // Lower triangle hfShape.getConvexTrianglePillar(i, j, false); Transform.pointToWorldFrame(hfPos, hfQuat, hfShape.pillarOffset, worldPillarOffset); if (convexPos.distanceTo(worldPillarOffset) < hfShape.pillarConvex.boundingSphereRadius + convexShape.boundingSphereRadius) { intersecting = this.convexConvex(convexShape, hfShape.pillarConvex, convexPos, worldPillarOffset, convexQuat, hfQuat, convexBody, hfBody, null, null, justTest, faceList, null); } if(justTest && intersecting){ return true; } // Upper triangle hfShape.getConvexTrianglePillar(i, j, true); Transform.pointToWorldFrame(hfPos, hfQuat, hfShape.pillarOffset, worldPillarOffset); if (convexPos.distanceTo(worldPillarOffset) < hfShape.pillarConvex.boundingSphereRadius + convexShape.boundingSphereRadius) { intersecting = this.convexConvex(convexShape, hfShape.pillarConvex, convexPos, worldPillarOffset, convexQuat, hfQuat, convexBody, hfBody, null, null, justTest, faceList, null); } if(justTest && intersecting){ return true; } } } }; var sphereHeightfield_tmp1 = new Vec3(); var sphereHeightfield_tmp2 = new Vec3(); /** * @method sphereHeightfield */ Narrowphase.prototype[Shape.types.SPHERE | Shape.types.HEIGHTFIELD] = Narrowphase.prototype.sphereHeightfield = function ( sphereShape, hfShape, spherePos, hfPos, sphereQuat, hfQuat, sphereBody, hfBody, rsi, rsj, justTest ){ var data = hfShape.data, radius = sphereShape.radius, w = hfShape.elementSize, worldPillarOffset = sphereHeightfield_tmp2; // Get sphere position to heightfield local! var localSpherePos = sphereHeightfield_tmp1; Transform.pointToLocalFrame(hfPos, hfQuat, spherePos, localSpherePos); // Get the index of the data points to test against var iMinX = Math.floor((localSpherePos.x - radius) / w) - 1, iMaxX = Math.ceil((localSpherePos.x + radius) / w) + 1, iMinY = Math.floor((localSpherePos.y - radius) / w) - 1, iMaxY = Math.ceil((localSpherePos.y + radius) / w) + 1; // Bail out if we are out of the terrain if(iMaxX < 0 || iMaxY < 0 || iMinX > data.length || iMaxY > data[0].length){ return; } // Clamp index to edges if(iMinX < 0){ iMinX = 0; } if(iMaxX < 0){ iMaxX = 0; } if(iMinY < 0){ iMinY = 0; } if(iMaxY < 0){ iMaxY = 0; } if(iMinX >= data.length){ iMinX = data.length - 1; } if(iMaxX >= data.length){ iMaxX = data.length - 1; } if(iMaxY >= data[0].length){ iMaxY = data[0].length - 1; } if(iMinY >= data[0].length){ iMinY = data[0].length - 1; } var minMax = []; hfShape.getRectMinMax(iMinX, iMinY, iMaxX, iMaxY, minMax); var min = minMax[0]; var max = minMax[1]; // Bail out if we're cant touch the bounding height box if(localSpherePos.z - radius > max || localSpherePos.z + radius < min){ return; } var result = this.result; for(var i = iMinX; i < iMaxX; i++){ for(var j = iMinY; j < iMaxY; j++){ var numContactsBefore = result.length; var intersecting = false; // Lower triangle hfShape.getConvexTrianglePillar(i, j, false); Transform.pointToWorldFrame(hfPos, hfQuat, hfShape.pillarOffset, worldPillarOffset); if (spherePos.distanceTo(worldPillarOffset) < hfShape.pillarConvex.boundingSphereRadius + sphereShape.boundingSphereRadius) { intersecting = this.sphereConvex(sphereShape, hfShape.pillarConvex, spherePos, worldPillarOffset, sphereQuat, hfQuat, sphereBody, hfBody, sphereShape, hfShape, justTest); } if(justTest && intersecting){ return true; } // Upper triangle hfShape.getConvexTrianglePillar(i, j, true); Transform.pointToWorldFrame(hfPos, hfQuat, hfShape.pillarOffset, worldPillarOffset); if (spherePos.distanceTo(worldPillarOffset) < hfShape.pillarConvex.boundingSphereRadius + sphereShape.boundingSphereRadius) { intersecting = this.sphereConvex(sphereShape, hfShape.pillarConvex, spherePos, worldPillarOffset, sphereQuat, hfQuat, sphereBody, hfBody, sphereShape, hfShape, justTest); } if(justTest && intersecting){ return true; } var numContacts = result.length - numContactsBefore; if(numContacts > 2){ return; } /* // Skip all but 1 for (var k = 0; k < numContacts - 1; k++) { result.pop(); } */ } } }; },{"../collision/AABB":24,"../collision/Ray":31,"../equations/ContactEquation":41,"../equations/FrictionEquation":43,"../math/Quaternion":50,"../math/Transform":51,"../math/Vec3":52,"../objects/Body":53,"../shapes/ConvexPolyhedron":60,"../shapes/Shape":65,"../solver/Solver":69,"../utils/Vec3Pool":76}],78:[function(require,module,exports){ /* global performance */ module.exports = World; var Shape = require('../shapes/Shape'); var Vec3 = require('../math/Vec3'); var Quaternion = require('../math/Quaternion'); var GSSolver = require('../solver/GSSolver'); var ContactEquation = require('../equations/ContactEquation'); var FrictionEquation = require('../equations/FrictionEquation'); var Narrowphase = require('./Narrowphase'); var EventTarget = require('../utils/EventTarget'); var ArrayCollisionMatrix = require('../collision/ArrayCollisionMatrix'); var OverlapKeeper = require('../collision/OverlapKeeper'); var Material = require('../material/Material'); var ContactMaterial = require('../material/ContactMaterial'); var Body = require('../objects/Body'); var TupleDictionary = require('../utils/TupleDictionary'); var RaycastResult = require('../collision/RaycastResult'); var AABB = require('../collision/AABB'); var Ray = require('../collision/Ray'); var NaiveBroadphase = require('../collision/NaiveBroadphase'); /** * The physics world * @class World * @constructor * @extends EventTarget * @param {object} [options] * @param {Vec3} [options.gravity] * @param {boolean} [options.allowSleep] * @param {Broadphase} [options.broadphase] * @param {Solver} [options.solver] * @param {boolean} [options.quatNormalizeFast] * @param {number} [options.quatNormalizeSkip] */ function World(options){ options = options || {}; EventTarget.apply(this); /** * Currently / last used timestep. Is set to -1 if not available. This value is updated before each internal step, which means that it is "fresh" inside event callbacks. * @property {Number} dt */ this.dt = -1; /** * Makes bodies go to sleep when they've been inactive * @property allowSleep * @type {Boolean} * @default false */ this.allowSleep = !!options.allowSleep; /** * All the current contacts (instances of ContactEquation) in the world. * @property contacts * @type {Array} */ this.contacts = []; this.frictionEquations = []; /** * How often to normalize quaternions. Set to 0 for every step, 1 for every second etc.. A larger value increases performance. If bodies tend to explode, set to a smaller value (zero to be sure nothing can go wrong). * @property quatNormalizeSkip * @type {Number} * @default 0 */ this.quatNormalizeSkip = options.quatNormalizeSkip !== undefined ? options.quatNormalizeSkip : 0; /** * Set to true to use fast quaternion normalization. It is often enough accurate to use. If bodies tend to explode, set to false. * @property quatNormalizeFast * @type {Boolean} * @see Quaternion.normalizeFast * @see Quaternion.normalize * @default false */ this.quatNormalizeFast = options.quatNormalizeFast !== undefined ? options.quatNormalizeFast : false; /** * The wall-clock time since simulation start * @property time * @type {Number} */ this.time = 0.0; /** * Number of timesteps taken since start * @property stepnumber * @type {Number} */ this.stepnumber = 0; /// Default and last timestep sizes this.default_dt = 1/60; this.nextId = 0; /** * @property gravity * @type {Vec3} */ this.gravity = new Vec3(); if(options.gravity){ this.gravity.copy(options.gravity); } /** * The broadphase algorithm to use. Default is NaiveBroadphase * @property broadphase * @type {Broadphase} */ this.broadphase = options.broadphase !== undefined ? options.broadphase : new NaiveBroadphase(); /** * @property bodies * @type {Array} */ this.bodies = []; /** * The solver algorithm to use. Default is GSSolver * @property solver * @type {Solver} */ this.solver = options.solver !== undefined ? options.solver : new GSSolver(); /** * @property constraints * @type {Array} */ this.constraints = []; /** * @property narrowphase * @type {Narrowphase} */ this.narrowphase = new Narrowphase(this); /** * @property {ArrayCollisionMatrix} collisionMatrix * @type {ArrayCollisionMatrix} */ this.collisionMatrix = new ArrayCollisionMatrix(); /** * CollisionMatrix from the previous step. * @property {ArrayCollisionMatrix} collisionMatrixPrevious * @type {ArrayCollisionMatrix} */ this.collisionMatrixPrevious = new ArrayCollisionMatrix(); this.bodyOverlapKeeper = new OverlapKeeper(); this.shapeOverlapKeeper = new OverlapKeeper(); /** * All added materials * @property materials * @type {Array} */ this.materials = []; /** * @property contactmaterials * @type {Array} */ this.contactmaterials = []; /** * Used to look up a ContactMaterial given two instances of Material. * @property {TupleDictionary} contactMaterialTable */ this.contactMaterialTable = new TupleDictionary(); this.defaultMaterial = new Material("default"); /** * This contact material is used if no suitable contactmaterial is found for a contact. * @property defaultContactMaterial * @type {ContactMaterial} */ this.defaultContactMaterial = new ContactMaterial(this.defaultMaterial, this.defaultMaterial, { friction: 0.3, restitution: 0.0 }); /** * @property doProfiling * @type {Boolean} */ this.doProfiling = false; /** * @property profile * @type {Object} */ this.profile = { solve:0, makeContactConstraints:0, broadphase:0, integrate:0, narrowphase:0, }; /** * Time accumulator for interpolation. See http://gafferongames.com/game-physics/fix-your-timestep/ * @property {Number} accumulator */ this.accumulator = 0; /** * @property subsystems * @type {Array} */ this.subsystems = []; /** * Dispatched after a body has been added to the world. * @event addBody * @param {Body} body The body that has been added to the world. */ this.addBodyEvent = { type:"addBody", body : null }; /** * Dispatched after a body has been removed from the world. * @event removeBody * @param {Body} body The body that has been removed from the world. */ this.removeBodyEvent = { type:"removeBody", body : null }; this.idToBodyMap = {}; this.broadphase.setWorld(this); } World.prototype = new EventTarget(); // Temp stuff var tmpAABB1 = new AABB(); var tmpArray1 = []; var tmpRay = new Ray(); /** * Get the contact material between materials m1 and m2 * @method getContactMaterial * @param {Material} m1 * @param {Material} m2 * @return {ContactMaterial} The contact material if it was found. */ World.prototype.getContactMaterial = function(m1,m2){ return this.contactMaterialTable.get(m1.id,m2.id); //this.contactmaterials[this.mats2cmat[i+j*this.materials.length]]; }; /** * Get number of objects in the world. * @method numObjects * @return {Number} * @deprecated */ World.prototype.numObjects = function(){ return this.bodies.length; }; /** * Store old collision state info * @method collisionMatrixTick */ World.prototype.collisionMatrixTick = function(){ var temp = this.collisionMatrixPrevious; this.collisionMatrixPrevious = this.collisionMatrix; this.collisionMatrix = temp; this.collisionMatrix.reset(); this.bodyOverlapKeeper.tick(); this.shapeOverlapKeeper.tick(); }; /** * Add a rigid body to the simulation. * @method add * @param {Body} body * @todo If the simulation has not yet started, why recrete and copy arrays for each body? Accumulate in dynamic arrays in this case. * @todo Adding an array of bodies should be possible. This would save some loops too * @deprecated Use .addBody instead */ World.prototype.add = World.prototype.addBody = function(body){ if(this.bodies.indexOf(body) !== -1){ return; } body.index = this.bodies.length; this.bodies.push(body); body.world = this; body.initPosition.copy(body.position); body.initVelocity.copy(body.velocity); body.timeLastSleepy = this.time; if(body instanceof Body){ body.initAngularVelocity.copy(body.angularVelocity); body.initQuaternion.copy(body.quaternion); } this.collisionMatrix.setNumObjects(this.bodies.length); this.addBodyEvent.body = body; this.idToBodyMap[body.id] = body; this.dispatchEvent(this.addBodyEvent); }; /** * Add a constraint to the simulation. * @method addConstraint * @param {Constraint} c */ World.prototype.addConstraint = function(c){ this.constraints.push(c); }; /** * Removes a constraint * @method removeConstraint * @param {Constraint} c */ World.prototype.removeConstraint = function(c){ var idx = this.constraints.indexOf(c); if(idx!==-1){ this.constraints.splice(idx,1); } }; /** * Raycast test * @method rayTest * @param {Vec3} from * @param {Vec3} to * @param {RaycastResult} result * @deprecated Use .raycastAll, .raycastClosest or .raycastAny instead. */ World.prototype.rayTest = function(from, to, result){ if(result instanceof RaycastResult){ // Do raycastclosest this.raycastClosest(from, to, { skipBackfaces: true }, result); } else { // Do raycastAll this.raycastAll(from, to, { skipBackfaces: true }, result); } }; /** * Ray cast against all bodies. The provided callback will be executed for each hit with a RaycastResult as single argument. * @method raycastAll * @param {Vec3} from * @param {Vec3} to * @param {Object} options * @param {number} [options.collisionFilterMask=-1] * @param {number} [options.collisionFilterGroup=-1] * @param {boolean} [options.skipBackfaces=false] * @param {boolean} [options.checkCollisionResponse=true] * @param {Function} callback * @return {boolean} True if any body was hit. */ World.prototype.raycastAll = function(from, to, options, callback){ options.mode = Ray.ALL; options.from = from; options.to = to; options.callback = callback; return tmpRay.intersectWorld(this, options); }; /** * Ray cast, and stop at the first result. Note that the order is random - but the method is fast. * @method raycastAny * @param {Vec3} from * @param {Vec3} to * @param {Object} options * @param {number} [options.collisionFilterMask=-1] * @param {number} [options.collisionFilterGroup=-1] * @param {boolean} [options.skipBackfaces=false] * @param {boolean} [options.checkCollisionResponse=true] * @param {RaycastResult} result * @return {boolean} True if any body was hit. */ World.prototype.raycastAny = function(from, to, options, result){ options.mode = Ray.ANY; options.from = from; options.to = to; options.result = result; return tmpRay.intersectWorld(this, options); }; /** * Ray cast, and return information of the closest hit. * @method raycastClosest * @param {Vec3} from * @param {Vec3} to * @param {Object} options * @param {number} [options.collisionFilterMask=-1] * @param {number} [options.collisionFilterGroup=-1] * @param {boolean} [options.skipBackfaces=false] * @param {boolean} [options.checkCollisionResponse=true] * @param {RaycastResult} result * @return {boolean} True if any body was hit. */ World.prototype.raycastClosest = function(from, to, options, result){ options.mode = Ray.CLOSEST; options.from = from; options.to = to; options.result = result; return tmpRay.intersectWorld(this, options); }; /** * Remove a rigid body from the simulation. * @method remove * @param {Body} body * @deprecated Use .removeBody instead */ World.prototype.remove = function(body){ body.world = null; var n = this.bodies.length - 1, bodies = this.bodies, idx = bodies.indexOf(body); if(idx !== -1){ bodies.splice(idx, 1); // Todo: should use a garbage free method // Recompute index for(var i=0; i!==bodies.length; i++){ bodies[i].index = i; } this.collisionMatrix.setNumObjects(n); this.removeBodyEvent.body = body; delete this.idToBodyMap[body.id]; this.dispatchEvent(this.removeBodyEvent); } }; /** * Remove a rigid body from the simulation. * @method removeBody * @param {Body} body */ World.prototype.removeBody = World.prototype.remove; World.prototype.getBodyById = function(id){ return this.idToBodyMap[id]; }; // TODO Make a faster map World.prototype.getShapeById = function(id){ var bodies = this.bodies; for(var i=0, bl = bodies.length; i= dt && substeps < maxSubSteps) { // Do fixed steps to catch up this.internalStep(dt); this.accumulator -= dt; substeps++; } var t = (this.accumulator % dt) / dt; for(var j=0; j !== this.bodies.length; j++){ var b = this.bodies[j]; b.previousPosition.lerp(b.position, t, b.interpolatedPosition); b.previousQuaternion.slerp(b.quaternion, t, b.interpolatedQuaternion); b.previousQuaternion.normalize(); } this.time += timeSinceLastCalled; } }; var /** * Dispatched after the world has stepped forward in time. * @event postStep */ World_step_postStepEvent = {type:"postStep"}, // Reusable event objects to save memory /** * Dispatched before the world steps forward in time. * @event preStep */ World_step_preStepEvent = {type:"preStep"}, World_step_collideEvent = {type:Body.COLLIDE_EVENT_NAME, body:null, contact:null }, World_step_oldContacts = [], // Pools for unused objects World_step_frictionEquationPool = [], World_step_p1 = [], // Reusable arrays for collision pairs World_step_p2 = [], World_step_gvec = new Vec3(), // Temporary vectors and quats World_step_vi = new Vec3(), World_step_vj = new Vec3(), World_step_wi = new Vec3(), World_step_wj = new Vec3(), World_step_t1 = new Vec3(), World_step_t2 = new Vec3(), World_step_rixn = new Vec3(), World_step_rjxn = new Vec3(), World_step_step_q = new Quaternion(), World_step_step_w = new Quaternion(), World_step_step_wq = new Quaternion(), invI_tau_dt = new Vec3(); World.prototype.internalStep = function(dt){ this.dt = dt; var world = this, that = this, contacts = this.contacts, p1 = World_step_p1, p2 = World_step_p2, N = this.numObjects(), bodies = this.bodies, solver = this.solver, gravity = this.gravity, doProfiling = this.doProfiling, profile = this.profile, DYNAMIC = Body.DYNAMIC, profilingStart, constraints = this.constraints, frictionEquationPool = World_step_frictionEquationPool, gnorm = gravity.norm(), gx = gravity.x, gy = gravity.y, gz = gravity.z, i=0; if(doProfiling){ profilingStart = performance.now(); } // Add gravity to all objects for(i=0; i!==N; i++){ var bi = bodies[i]; if(bi.type === DYNAMIC){ // Only for dynamic bodies var f = bi.force, m = bi.mass; f.x += m*gx; f.y += m*gy; f.z += m*gz; } } // Update subsystems for(var i=0, Nsubsystems=this.subsystems.length; i!==Nsubsystems; i++){ this.subsystems[i].update(); } // Collision detection if(doProfiling){ profilingStart = performance.now(); } p1.length = 0; // Clean up pair arrays from last step p2.length = 0; this.broadphase.collisionPairs(this,p1,p2); if(doProfiling){ profile.broadphase = performance.now() - profilingStart; } // Remove constrained pairs with collideConnected == false var Nconstraints = constraints.length; for(i=0; i!==Nconstraints; i++){ var c = constraints[i]; if(!c.collideConnected){ for(var j = p1.length-1; j>=0; j-=1){ if( (c.bodyA === p1[j] && c.bodyB === p2[j]) || (c.bodyB === p1[j] && c.bodyA === p2[j])){ p1.splice(j, 1); p2.splice(j, 1); } } } } this.collisionMatrixTick(); // Generate contacts if(doProfiling){ profilingStart = performance.now(); } var oldcontacts = World_step_oldContacts; var NoldContacts = contacts.length; for(i=0; i!==NoldContacts; i++){ oldcontacts.push(contacts[i]); } contacts.length = 0; // Transfer FrictionEquation from current list to the pool for reuse var NoldFrictionEquations = this.frictionEquations.length; for(i=0; i!==NoldFrictionEquations; i++){ frictionEquationPool.push(this.frictionEquations[i]); } this.frictionEquations.length = 0; this.narrowphase.getContacts( p1, p2, this, contacts, oldcontacts, // To be reused this.frictionEquations, frictionEquationPool ); if(doProfiling){ profile.narrowphase = performance.now() - profilingStart; } // Loop over all collisions if(doProfiling){ profilingStart = performance.now(); } // Add all friction eqs for (var i = 0; i < this.frictionEquations.length; i++) { solver.addEquation(this.frictionEquations[i]); } var ncontacts = contacts.length; for(var k=0; k!==ncontacts; k++){ // Current contact var c = contacts[k]; // Get current collision indeces var bi = c.bi, bj = c.bj, si = c.si, sj = c.sj; // Get collision properties var cm; if(bi.material && bj.material){ cm = this.getContactMaterial(bi.material,bj.material) || this.defaultContactMaterial; } else { cm = this.defaultContactMaterial; } // c.enabled = bi.collisionResponse && bj.collisionResponse && si.collisionResponse && sj.collisionResponse; var mu = cm.friction; // c.restitution = cm.restitution; // If friction or restitution were specified in the material, use them if(bi.material && bj.material){ if(bi.material.friction >= 0 && bj.material.friction >= 0){ mu = bi.material.friction * bj.material.friction; } if(bi.material.restitution >= 0 && bj.material.restitution >= 0){ c.restitution = bi.material.restitution * bj.material.restitution; } } // c.setSpookParams( // cm.contactEquationStiffness, // cm.contactEquationRelaxation, // dt // ); solver.addEquation(c); // // Add friction constraint equation // if(mu > 0){ // // Create 2 tangent equations // var mug = mu * gnorm; // var reducedMass = (bi.invMass + bj.invMass); // if(reducedMass > 0){ // reducedMass = 1/reducedMass; // } // var pool = frictionEquationPool; // var c1 = pool.length ? pool.pop() : new FrictionEquation(bi,bj,mug*reducedMass); // var c2 = pool.length ? pool.pop() : new FrictionEquation(bi,bj,mug*reducedMass); // this.frictionEquations.push(c1, c2); // c1.bi = c2.bi = bi; // c1.bj = c2.bj = bj; // c1.minForce = c2.minForce = -mug*reducedMass; // c1.maxForce = c2.maxForce = mug*reducedMass; // // Copy over the relative vectors // c1.ri.copy(c.ri); // c1.rj.copy(c.rj); // c2.ri.copy(c.ri); // c2.rj.copy(c.rj); // // Construct tangents // c.ni.tangents(c1.t, c2.t); // // Set spook params // c1.setSpookParams(cm.frictionEquationStiffness, cm.frictionEquationRelaxation, dt); // c2.setSpookParams(cm.frictionEquationStiffness, cm.frictionEquationRelaxation, dt); // c1.enabled = c2.enabled = c.enabled; // // Add equations to solver // solver.addEquation(c1); // solver.addEquation(c2); // } if( bi.allowSleep && bi.type === Body.DYNAMIC && bi.sleepState === Body.SLEEPING && bj.sleepState === Body.AWAKE && bj.type !== Body.STATIC ){ var speedSquaredB = bj.velocity.norm2() + bj.angularVelocity.norm2(); var speedLimitSquaredB = Math.pow(bj.sleepSpeedLimit,2); if(speedSquaredB >= speedLimitSquaredB*2){ bi._wakeUpAfterNarrowphase = true; } } if( bj.allowSleep && bj.type === Body.DYNAMIC && bj.sleepState === Body.SLEEPING && bi.sleepState === Body.AWAKE && bi.type !== Body.STATIC ){ var speedSquaredA = bi.velocity.norm2() + bi.angularVelocity.norm2(); var speedLimitSquaredA = Math.pow(bi.sleepSpeedLimit,2); if(speedSquaredA >= speedLimitSquaredA*2){ bj._wakeUpAfterNarrowphase = true; } } // Now we know that i and j are in contact. Set collision matrix state this.collisionMatrix.set(bi, bj, true); if (!this.collisionMatrixPrevious.get(bi, bj)) { // First contact! // We reuse the collideEvent object, otherwise we will end up creating new objects for each new contact, even if there's no event listener attached. World_step_collideEvent.body = bj; World_step_collideEvent.contact = c; bi.dispatchEvent(World_step_collideEvent); World_step_collideEvent.body = bi; bj.dispatchEvent(World_step_collideEvent); } this.bodyOverlapKeeper.set(bi.id, bj.id); this.shapeOverlapKeeper.set(si.id, sj.id); } this.emitContactEvents(); if(doProfiling){ profile.makeContactConstraints = performance.now() - profilingStart; profilingStart = performance.now(); } // Wake up bodies for(i=0; i!==N; i++){ var bi = bodies[i]; if(bi._wakeUpAfterNarrowphase){ bi.wakeUp(); bi._wakeUpAfterNarrowphase = false; } } // Add user-added constraints var Nconstraints = constraints.length; for(i=0; i!==Nconstraints; i++){ var c = constraints[i]; c.update(); for(var j=0, Neq=c.equations.length; j!==Neq; j++){ var eq = c.equations[j]; solver.addEquation(eq); } } // Solve the constrained system solver.solve(dt,this); if(doProfiling){ profile.solve = performance.now() - profilingStart; } // Remove all contacts from solver solver.removeAllEquations(); // Apply damping, see http://code.google.com/p/bullet/issues/detail?id=74 for details var pow = Math.pow; for(i=0; i!==N; i++){ var bi = bodies[i]; if(bi.type & DYNAMIC){ // Only for dynamic bodies var ld = pow(1.0 - bi.linearDamping,dt); var v = bi.velocity; v.mult(ld,v); var av = bi.angularVelocity; if(av){ var ad = pow(1.0 - bi.angularDamping,dt); av.mult(ad,av); } } } this.dispatchEvent(World_step_preStepEvent); // Invoke pre-step callbacks for(i=0; i!==N; i++){ var bi = bodies[i]; if(bi.preStep){ bi.preStep.call(bi); } } // Leap frog // vnew = v + h*f/m // xnew = x + h*vnew if(doProfiling){ profilingStart = performance.now(); } var stepnumber = this.stepnumber; var quatNormalize = stepnumber % (this.quatNormalizeSkip + 1) === 0; var quatNormalizeFast = this.quatNormalizeFast; for(i=0; i!==N; i++){ bodies[i].integrate(dt, quatNormalize, quatNormalizeFast); } this.clearForces(); this.broadphase.dirty = true; if(doProfiling){ profile.integrate = performance.now() - profilingStart; } // Update world time this.time += dt; this.stepnumber += 1; this.dispatchEvent(World_step_postStepEvent); // Invoke post-step callbacks for(i=0; i!==N; i++){ var bi = bodies[i]; var postStep = bi.postStep; if(postStep){ postStep.call(bi); } } // Sleeping update if(this.allowSleep){ for(i=0; i!==N; i++){ bodies[i].sleepTick(this.time); } } }; World.prototype.emitContactEvents = (function(){ var additions = []; var removals = []; var beginContactEvent = { type: 'beginContact', bodyA: null, bodyB: null }; var endContactEvent = { type: 'endContact', bodyA: null, bodyB: null }; var beginShapeContactEvent = { type: 'beginShapeContact', bodyA: null, bodyB: null, shapeA: null, shapeB: null }; var endShapeContactEvent = { type: 'endShapeContact', bodyA: null, bodyB: null, shapeA: null, shapeB: null }; return function(){ var hasBeginContact = this.hasAnyEventListener('beginContact'); var hasEndContact = this.hasAnyEventListener('endContact'); if(hasBeginContact || hasEndContact){ this.bodyOverlapKeeper.getDiff(additions, removals); } if(hasBeginContact){ for (var i = 0, l = additions.length; i < l; i += 2) { beginContactEvent.bodyA = this.getBodyById(additions[i]); beginContactEvent.bodyB = this.getBodyById(additions[i+1]); this.dispatchEvent(beginContactEvent); } beginContactEvent.bodyA = beginContactEvent.bodyB = null; } if(hasEndContact){ for (var i = 0, l = removals.length; i < l; i += 2) { endContactEvent.bodyA = this.getBodyById(removals[i]); endContactEvent.bodyB = this.getBodyById(removals[i+1]); this.dispatchEvent(endContactEvent); } endContactEvent.bodyA = endContactEvent.bodyB = null; } additions.length = removals.length = 0; var hasBeginShapeContact = this.hasAnyEventListener('beginShapeContact'); var hasEndShapeContact = this.hasAnyEventListener('endShapeContact'); if(hasBeginShapeContact || hasEndShapeContact){ this.shapeOverlapKeeper.getDiff(additions, removals); } if(hasBeginShapeContact){ for (var i = 0, l = additions.length; i < l; i += 2) { var shapeA = this.getShapeById(additions[i]); var shapeB = this.getShapeById(additions[i+1]); beginShapeContactEvent.shapeA = shapeA; beginShapeContactEvent.shapeB = shapeB; beginShapeContactEvent.bodyA = shapeA.body; beginShapeContactEvent.bodyB = shapeB.body; this.dispatchEvent(beginShapeContactEvent); } beginShapeContactEvent.bodyA = beginShapeContactEvent.bodyB = beginShapeContactEvent.shapeA = beginShapeContactEvent.shapeB = null; } if(hasEndShapeContact){ for (var i = 0, l = removals.length; i < l; i += 2) { var shapeA = this.getShapeById(removals[i]); var shapeB = this.getShapeById(removals[i+1]); endShapeContactEvent.shapeA = shapeA; endShapeContactEvent.shapeB = shapeB; endShapeContactEvent.bodyA = shapeA.body; endShapeContactEvent.bodyB = shapeB.body; this.dispatchEvent(endShapeContactEvent); } endShapeContactEvent.bodyA = endShapeContactEvent.bodyB = endShapeContactEvent.shapeA = endShapeContactEvent.shapeB = null; } }; })(); /** * Sets all body forces in the world to zero. * @method clearForces */ World.prototype.clearForces = function(){ var bodies = this.bodies; var N = bodies.length; for(var i=0; i !== N; i++){ var b = bodies[i], force = b.force, tau = b.torque; b.force.set(0,0,0); b.torque.set(0,0,0); } }; },{"../collision/AABB":24,"../collision/ArrayCollisionMatrix":25,"../collision/NaiveBroadphase":28,"../collision/OverlapKeeper":30,"../collision/Ray":31,"../collision/RaycastResult":32,"../equations/ContactEquation":41,"../equations/FrictionEquation":43,"../material/ContactMaterial":46,"../material/Material":47,"../math/Quaternion":50,"../math/Vec3":52,"../objects/Body":53,"../shapes/Shape":65,"../solver/GSSolver":68,"../utils/EventTarget":71,"../utils/TupleDictionary":74,"./Narrowphase":77}],79:[function(require,module,exports){ const BinaryHeap = require('./BinaryHeap'); const utils = require('./utils.js'); class AStar { static init (graph) { for (let x = 0; x < graph.length; x++) { //for(var x in graph) { const node = graph[x]; node.f = 0; node.g = 0; node.h = 0; node.cost = 1.0; node.visited = false; node.closed = false; node.parent = null; } } static cleanUp (graph) { for (let x = 0; x < graph.length; x++) { const node = graph[x]; delete node.f; delete node.g; delete node.h; delete node.cost; delete node.visited; delete node.closed; delete node.parent; } } static heap () { return new BinaryHeap(function (node) { return node.f; }); } static search (graph, start, end) { this.init(graph); //heuristic = heuristic || astar.manhattan; const openHeap = this.heap(); openHeap.push(start); while (openHeap.size() > 0) { // Grab the lowest f(x) to process next. Heap keeps this sorted for us. const currentNode = openHeap.pop(); // End case -- result has been found, return the traced path. if (currentNode === end) { let curr = currentNode; const ret = []; while (curr.parent) { ret.push(curr); curr = curr.parent; } this.cleanUp(ret); return ret.reverse(); } // Normal case -- move currentNode from open to closed, process each of its neighbours. currentNode.closed = true; // Find all neighbours for the current node. Optionally find diagonal neighbours as well (false by default). const neighbours = this.neighbours(graph, currentNode); for (let i = 0, il = neighbours.length; i < il; i++) { const neighbour = neighbours[i]; if (neighbour.closed) { // Not a valid node to process, skip to next neighbour. continue; } // The g score is the shortest distance from start to current node. // We need to check if the path we have arrived at this neighbour is the shortest one we have seen yet. const gScore = currentNode.g + neighbour.cost; const beenVisited = neighbour.visited; if (!beenVisited || gScore < neighbour.g) { // Found an optimal (so far) path to this node. Take score for node to see how good it is. neighbour.visited = true; neighbour.parent = currentNode; if (!neighbour.centroid || !end.centroid) throw new Error('Unexpected state'); neighbour.h = neighbour.h || this.heuristic(neighbour.centroid, end.centroid); neighbour.g = gScore; neighbour.f = neighbour.g + neighbour.h; if (!beenVisited) { // Pushing to heap will put it in proper place based on the 'f' value. openHeap.push(neighbour); } else { // Already seen the node, but since it has been rescored we need to reorder it in the heap openHeap.rescoreElement(neighbour); } } } } // No result was found - empty array signifies failure to find path. return []; } static heuristic (pos1, pos2) { return utils.distanceToSquared(pos1, pos2); } static neighbours (graph, node) { const ret = []; for (let e = 0; e < node.neighbours.length; e++) { ret.push(graph[node.neighbours[e]]); } return ret; } } module.exports = AStar; },{"./BinaryHeap":80,"./utils.js":83}],80:[function(require,module,exports){ // javascript-astar // http://github.com/bgrins/javascript-astar // Freely distributable under the MIT License. // Implements the astar search algorithm in javascript using a binary heap. class BinaryHeap { constructor (scoreFunction) { this.content = []; this.scoreFunction = scoreFunction; } push (element) { // Add the new element to the end of the array. this.content.push(element); // Allow it to sink down. this.sinkDown(this.content.length - 1); } pop () { // Store the first element so we can return it later. const result = this.content[0]; // Get the element at the end of the array. const end = this.content.pop(); // If there are any elements left, put the end element at the // start, and let it bubble up. if (this.content.length > 0) { this.content[0] = end; this.bubbleUp(0); } return result; } remove (node) { const i = this.content.indexOf(node); // When it is found, the process seen in 'pop' is repeated // to fill up the hole. const end = this.content.pop(); if (i !== this.content.length - 1) { this.content[i] = end; if (this.scoreFunction(end) < this.scoreFunction(node)) { this.sinkDown(i); } else { this.bubbleUp(i); } } } size () { return this.content.length; } rescoreElement (node) { this.sinkDown(this.content.indexOf(node)); } sinkDown (n) { // Fetch the element that has to be sunk. const element = this.content[n]; // When at 0, an element can not sink any further. while (n > 0) { // Compute the parent element's index, and fetch it. const parentN = ((n + 1) >> 1) - 1; const parent = this.content[parentN]; if (this.scoreFunction(element) < this.scoreFunction(parent)) { // Swap the elements if the parent is greater. this.content[parentN] = element; this.content[n] = parent; // Update 'n' to continue at the new position. n = parentN; } else { // Found a parent that is less, no need to sink any further. break; } } } bubbleUp (n) { // Look up the target element and its score. const length = this.content.length, element = this.content[n], elemScore = this.scoreFunction(element); while (true) { // Compute the indices of the child elements. const child2N = (n + 1) << 1, child1N = child2N - 1; // This is used to store the new position of the element, // if any. let swap = null; let child1Score; // If the first child exists (is inside the array)... if (child1N < length) { // Look it up and compute its score. const child1 = this.content[child1N]; child1Score = this.scoreFunction(child1); // If the score is less than our element's, we need to swap. if (child1Score < elemScore) { swap = child1N; } } // Do the same checks for the other child. if (child2N < length) { const child2 = this.content[child2N], child2Score = this.scoreFunction(child2); if (child2Score < (swap === null ? elemScore : child1Score)) { swap = child2N; } } // If the element needs to be moved, swap it, and continue. if (swap !== null) { this.content[n] = this.content[swap]; this.content[swap] = element; n = swap; } // Otherwise, we are done. else { break; } } } } module.exports = BinaryHeap; },{}],81:[function(require,module,exports){ const utils = require('./utils'); class Channel { constructor () { this.portals = []; } push (p1, p2) { if (p2 === undefined) p2 = p1; this.portals.push({ left: p1, right: p2 }); } stringPull () { const portals = this.portals; const pts = []; // Init scan state let portalApex, portalLeft, portalRight; let apexIndex = 0, leftIndex = 0, rightIndex = 0; portalApex = portals[0].left; portalLeft = portals[0].left; portalRight = portals[0].right; // Add start point. pts.push(portalApex); for (let i = 1; i < portals.length; i++) { const left = portals[i].left; const right = portals[i].right; // Update right vertex. if (utils.triarea2(portalApex, portalRight, right) <= 0.0) { if (utils.vequal(portalApex, portalRight) || utils.triarea2(portalApex, portalLeft, right) > 0.0) { // Tighten the funnel. portalRight = right; rightIndex = i; } else { // Right over left, insert left to path and restart scan from portal left point. pts.push(portalLeft); // Make current left the new apex. portalApex = portalLeft; apexIndex = leftIndex; // Reset portal portalLeft = portalApex; portalRight = portalApex; leftIndex = apexIndex; rightIndex = apexIndex; // Restart scan i = apexIndex; continue; } } // Update left vertex. if (utils.triarea2(portalApex, portalLeft, left) >= 0.0) { if (utils.vequal(portalApex, portalLeft) || utils.triarea2(portalApex, portalRight, left) < 0.0) { // Tighten the funnel. portalLeft = left; leftIndex = i; } else { // Left over right, insert right to path and restart scan from portal right point. pts.push(portalRight); // Make current right the new apex. portalApex = portalRight; apexIndex = rightIndex; // Reset portal portalLeft = portalApex; portalRight = portalApex; leftIndex = apexIndex; rightIndex = apexIndex; // Restart scan i = apexIndex; continue; } } } if ((pts.length === 0) || (!utils.vequal(pts[pts.length - 1], portals[portals.length - 1].left))) { // Append last point to path. pts.push(portals[portals.length - 1].left); } this.path = pts; return pts; } } module.exports = Channel; },{"./utils":83}],82:[function(require,module,exports){ const utils = require('./utils'); const AStar = require('./AStar'); const Channel = require('./Channel'); var polygonId = 1; var buildPolygonGroups = function (navigationMesh) { var polygons = navigationMesh.polygons; var polygonGroups = []; var groupCount = 0; var spreadGroupId = function (polygon) { polygon.neighbours.forEach((neighbour) => { if (neighbour.group === undefined) { neighbour.group = polygon.group; spreadGroupId(neighbour); } }); }; polygons.forEach((polygon) => { if (polygon.group === undefined) { polygon.group = groupCount++; // Spread it spreadGroupId(polygon); } if (!polygonGroups[polygon.group]) polygonGroups[polygon.group] = []; polygonGroups[polygon.group].push(polygon); }); console.log('Groups built: ', polygonGroups.length); return polygonGroups; }; var buildPolygonNeighbours = function (polygon, navigationMesh) { polygon.neighbours = []; // All other nodes that contain at least two of our vertices are our neighbours for (var i = 0, len = navigationMesh.polygons.length; i < len; i++) { if (polygon === navigationMesh.polygons[i]) continue; // Don't check polygons that are too far, since the intersection tests take a long time if (polygon.centroid.distanceToSquared(navigationMesh.polygons[i].centroid) > 100 * 100) continue; var matches = utils.array_intersect(polygon.vertexIds, navigationMesh.polygons[i].vertexIds); if (matches.length >= 2) { polygon.neighbours.push(navigationMesh.polygons[i]); } } }; var buildPolygonsFromGeometry = function (geometry) { console.log('Vertices:', geometry.vertices.length, 'polygons:', geometry.faces.length); var polygons = []; var vertices = geometry.vertices; var faceVertexUvs = geometry.faceVertexUvs; // Convert the faces into a custom format that supports more than 3 vertices geometry.faces.forEach((face) => { polygons.push({ id: polygonId++, vertexIds: [face.a, face.b, face.c], centroid: face.centroid, normal: face.normal, neighbours: [] }); }); var navigationMesh = { polygons: polygons, vertices: vertices, faceVertexUvs: faceVertexUvs }; // Build a list of adjacent polygons polygons.forEach((polygon) => { buildPolygonNeighbours(polygon, navigationMesh); }); return navigationMesh; }; var buildNavigationMesh = function (geometry) { // Prepare geometry utils.computeCentroids(geometry); geometry.mergeVertices(); return buildPolygonsFromGeometry(geometry); }; var getSharedVerticesInOrder = function (a, b) { var aList = a.vertexIds; var bList = b.vertexIds; var sharedVertices = []; aList.forEach((vId) => { if (bList.includes(vId)) { sharedVertices.push(vId); } }); if (sharedVertices.length < 2) return []; // console.log("TRYING aList:", aList, ", bList:", bList, ", sharedVertices:", sharedVertices); if (sharedVertices.includes(aList[0]) && sharedVertices.includes(aList[aList.length - 1])) { // Vertices on both edges are bad, so shift them once to the left aList.push(aList.shift()); } if (sharedVertices.includes(bList[0]) && sharedVertices.includes(bList[bList.length - 1])) { // Vertices on both edges are bad, so shift them once to the left bList.push(bList.shift()); } // Again! sharedVertices = []; aList.forEach((vId) => { if (bList.includes(vId)) { sharedVertices.push(vId); } }); return sharedVertices; }; var groupNavMesh = function (navigationMesh) { var saveObj = {}; navigationMesh.vertices.forEach((v) => { v.x = utils.roundNumber(v.x, 2); v.y = utils.roundNumber(v.y, 2); v.z = utils.roundNumber(v.z, 2); }); saveObj.vertices = navigationMesh.vertices; var groups = buildPolygonGroups(navigationMesh); saveObj.groups = []; var findPolygonIndex = function (group, p) { for (var i = 0; i < group.length; i++) { if (p === group[i]) return i; } }; groups.forEach((group) => { var newGroup = []; group.forEach((p) => { var neighbours = []; p.neighbours.forEach((n) => { neighbours.push(findPolygonIndex(group, n)); }); // Build a portal list to each neighbour var portals = []; p.neighbours.forEach((n) => { portals.push(getSharedVerticesInOrder(p, n)); }); p.centroid.x = utils.roundNumber(p.centroid.x, 2); p.centroid.y = utils.roundNumber(p.centroid.y, 2); p.centroid.z = utils.roundNumber(p.centroid.z, 2); newGroup.push({ id: findPolygonIndex(group, p), neighbours: neighbours, vertexIds: p.vertexIds, centroid: p.centroid, portals: portals }); }); saveObj.groups.push(newGroup); }); return saveObj; }; var zoneNodes = {}; module.exports = { buildNodes: function (geometry) { var navigationMesh = buildNavigationMesh(geometry); var zoneNodes = groupNavMesh(navigationMesh); return zoneNodes; }, setZoneData: function (zone, data) { zoneNodes[zone] = data; }, getGroup: function (zone, position) { if (!zoneNodes[zone]) return null; var closestNodeGroup = null; var distance = Math.pow(50, 2); zoneNodes[zone].groups.forEach((group, index) => { group.forEach((node) => { var measuredDistance = utils.distanceToSquared(node.centroid, position); if (measuredDistance < distance) { closestNodeGroup = index; distance = measuredDistance; } }); }); return closestNodeGroup; }, getRandomNode: function (zone, group, nearPosition, nearRange) { if (!zoneNodes[zone]) return new THREE.Vector3(); nearPosition = nearPosition || null; nearRange = nearRange || 0; var candidates = []; var polygons = zoneNodes[zone].groups[group]; polygons.forEach((p) => { if (nearPosition && nearRange) { if (utils.distanceToSquared(nearPosition, p.centroid) < nearRange * nearRange) { candidates.push(p.centroid); } } else { candidates.push(p.centroid); } }); return utils.sample(candidates) || new THREE.Vector3(); }, getClosestNode: function (position, zone, group, checkPolygon = false) { const nodes = zoneNodes[zone].groups[group]; const vertices = zoneNodes[zone].vertices; let closestNode = null; let closestDistance = Infinity; nodes.forEach((node) => { const distance = utils.distanceToSquared(node.centroid, position); if (distance < closestDistance && (!checkPolygon || utils.isVectorInPolygon(position, node, vertices))) { closestNode = node; closestDistance = distance; } }); return closestNode; }, findPath: function (startPosition, targetPosition, zone, group) { const nodes = zoneNodes[zone].groups[group]; const vertices = zoneNodes[zone].vertices; const closestNode = this.getClosestNode(startPosition, zone, group); const farthestNode = this.getClosestNode(targetPosition, zone, group, true); // If we can't find any node, just go straight to the target if (!closestNode || !farthestNode) { return null; } const paths = AStar.search(nodes, closestNode, farthestNode); const getPortalFromTo = function (a, b) { for (var i = 0; i < a.neighbours.length; i++) { if (a.neighbours[i] === b.id) { return a.portals[i]; } } }; // We have the corridor, now pull the rope. const channel = new Channel(); channel.push(startPosition); for (let i = 0; i < paths.length; i++) { const polygon = paths[i]; const nextPolygon = paths[i + 1]; if (nextPolygon) { const portals = getPortalFromTo(polygon, nextPolygon); channel.push( vertices[portals[0]], vertices[portals[1]] ); } } channel.push(targetPosition); channel.stringPull(); // Return the path, omitting first position (which is already known). const path = channel.path.map((c) => new THREE.Vector3(c.x, c.y, c.z)); path.shift(); return path; } }; },{"./AStar":79,"./Channel":81,"./utils":83}],83:[function(require,module,exports){ class Utils { static computeCentroids (geometry) { var f, fl, face; for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) { face = geometry.faces[ f ]; face.centroid = new THREE.Vector3( 0, 0, 0 ); face.centroid.add( geometry.vertices[ face.a ] ); face.centroid.add( geometry.vertices[ face.b ] ); face.centroid.add( geometry.vertices[ face.c ] ); face.centroid.divideScalar( 3 ); } } static roundNumber (number, decimals) { var newnumber = Number(number + '').toFixed(parseInt(decimals)); return parseFloat(newnumber); } static sample (list) { return list[Math.floor(Math.random() * list.length)]; } static mergeVertexIds (aList, bList) { var sharedVertices = []; aList.forEach((vID) => { if (bList.indexOf(vID) >= 0) { sharedVertices.push(vID); } }); if (sharedVertices.length < 2) return []; if (sharedVertices.includes(aList[0]) && sharedVertices.includes(aList[aList.length - 1])) { // Vertices on both edges are bad, so shift them once to the left aList.push(aList.shift()); } if (sharedVertices.includes(bList[0]) && sharedVertices.includes(bList[bList.length - 1])) { // Vertices on both edges are bad, so shift them once to the left bList.push(bList.shift()); } // Again! sharedVertices = []; aList.forEach((vId) => { if (bList.includes(vId)) { sharedVertices.push(vId); } }); var clockwiseMostSharedVertex = sharedVertices[1]; var counterClockwiseMostSharedVertex = sharedVertices[0]; var cList = aList.slice(); while (cList[0] !== clockwiseMostSharedVertex) { cList.push(cList.shift()); } var c = 0; var temp = bList.slice(); while (temp[0] !== counterClockwiseMostSharedVertex) { temp.push(temp.shift()); if (c++ > 10) throw new Error('Unexpected state'); } // Shave temp.shift(); temp.pop(); cList = cList.concat(temp); return cList; } static setPolygonCentroid (polygon, navigationMesh) { var sum = new THREE.Vector3(); var vertices = navigationMesh.vertices; polygon.vertexIds.forEach((vId) => { sum.add(vertices[vId]); }); sum.divideScalar(polygon.vertexIds.length); polygon.centroid.copy(sum); } static cleanPolygon (polygon, navigationMesh) { var newVertexIds = []; var vertices = navigationMesh.vertices; for (var i = 0; i < polygon.vertexIds.length; i++) { var vertex = vertices[polygon.vertexIds[i]]; var nextVertexId, previousVertexId; var nextVertex, previousVertex; // console.log("nextVertex: ", nextVertex); if (i === 0) { nextVertexId = polygon.vertexIds[1]; previousVertexId = polygon.vertexIds[polygon.vertexIds.length - 1]; } else if (i === polygon.vertexIds.length - 1) { nextVertexId = polygon.vertexIds[0]; previousVertexId = polygon.vertexIds[polygon.vertexIds.length - 2]; } else { nextVertexId = polygon.vertexIds[i + 1]; previousVertexId = polygon.vertexIds[i - 1]; } nextVertex = vertices[nextVertexId]; previousVertex = vertices[previousVertexId]; var a = nextVertex.clone().sub(vertex); var b = previousVertex.clone().sub(vertex); var angle = a.angleTo(b); // console.log(angle); if (angle > Math.PI - 0.01 && angle < Math.PI + 0.01) { // Unneccesary vertex // console.log("Unneccesary vertex: ", polygon.vertexIds[i]); // console.log("Angle between "+previousVertexId+", "+polygon.vertexIds[i]+" "+nextVertexId+" was: ", angle); // Remove the neighbours who had this vertex var goodNeighbours = []; polygon.neighbours.forEach((neighbour) => { if (!neighbour.vertexIds.includes(polygon.vertexIds[i])) { goodNeighbours.push(neighbour); } }); polygon.neighbours = goodNeighbours; // TODO cleanup the list of vertices and rebuild vertexIds for all polygons } else { newVertexIds.push(polygon.vertexIds[i]); } } // console.log("New vertexIds: ", newVertexIds); polygon.vertexIds = newVertexIds; setPolygonCentroid(polygon, navigationMesh); } static isConvex (polygon, navigationMesh) { var vertices = navigationMesh.vertices; if (polygon.vertexIds.length < 3) return false; var convex = true; var total = 0; var results = []; for (var i = 0; i < polygon.vertexIds.length; i++) { var vertex = vertices[polygon.vertexIds[i]]; var nextVertex, previousVertex; if (i === 0) { nextVertex = vertices[polygon.vertexIds[1]]; previousVertex = vertices[polygon.vertexIds[polygon.vertexIds.length - 1]]; } else if (i === polygon.vertexIds.length - 1) { nextVertex = vertices[polygon.vertexIds[0]]; previousVertex = vertices[polygon.vertexIds[polygon.vertexIds.length - 2]]; } else { nextVertex = vertices[polygon.vertexIds[i + 1]]; previousVertex = vertices[polygon.vertexIds[i - 1]]; } var a = nextVertex.clone().sub(vertex); var b = previousVertex.clone().sub(vertex); var angle = a.angleTo(b); total += angle; if (angle === Math.PI || angle === 0) return false; var r = a.cross(b).y; results.push(r); } // if ( total > (polygon.vertexIds.length-2)*Math.PI ) return false; results.forEach((r) => { if (r === 0) convex = false; }); if (results[0] > 0) { results.forEach((r) => { if (r < 0) convex = false; }); } else { results.forEach((r) => { if (r > 0) convex = false; }); } return convex; } static distanceToSquared (a, b) { var dx = a.x - b.x; var dy = a.y - b.y; var dz = a.z - b.z; return dx * dx + dy * dy + dz * dz; } //+ Jonas Raoni Soares Silva //@ http://jsfromhell.com/math/is-point-in-poly [rev. #0] static isPointInPoly (poly, pt) { for (var c = false, i = -1, l = poly.length, j = l - 1; ++i < l; j = i) ((poly[i].z <= pt.z && pt.z < poly[j].z) || (poly[j].z <= pt.z && pt.z < poly[i].z)) && (pt.x < (poly[j].x - poly[i].x) * (pt.z - poly[i].z) / (poly[j].z - poly[i].z) + poly[i].x) && (c = !c); return c; } static isVectorInPolygon (vector, polygon, vertices) { // reference point will be the centroid of the polygon // We need to rotate the vector as well as all the points which the polygon uses var lowestPoint = 100000; var highestPoint = -100000; var polygonVertices = []; polygon.vertexIds.forEach((vId) => { lowestPoint = Math.min(vertices[vId].y, lowestPoint); highestPoint = Math.max(vertices[vId].y, highestPoint); polygonVertices.push(vertices[vId]); }); if (vector.y < highestPoint + 0.5 && vector.y > lowestPoint - 0.5 && this.isPointInPoly(polygonVertices, vector)) { return true; } return false; } static triarea2 (a, b, c) { var ax = b.x - a.x; var az = b.z - a.z; var bx = c.x - a.x; var bz = c.z - a.z; return bx * az - ax * bz; } static vequal (a, b) { return this.distanceToSquared(a, b) < 0.00001; } static array_intersect () { let i, shortest, nShortest, n, len, ret = [], obj = {}, nOthers; nOthers = arguments.length - 1; nShortest = arguments[0].length; shortest = 0; for (i = 0; i <= nOthers; i++) { n = arguments[i].length; if (n < nShortest) { shortest = i; nShortest = n; } } for (i = 0; i <= nOthers; i++) { n = (i === shortest) ? 0 : (i || shortest); //Read the shortest array first. Read the first array instead of the shortest len = arguments[n].length; for (var j = 0; j < len; j++) { var elem = arguments[n][j]; if (obj[elem] === i - 1) { if (i === nOthers) { ret.push(elem); obj[elem] = 0; } else { obj[elem] = i; } } else if (i === 0) { obj[elem] = 0; } } } return ret; } } module.exports = Utils; },{}],84:[function(require,module,exports){ var CANNON = require('cannon'), quickhull = require('./lib/THREE.quickhull'); var PI_2 = Math.PI / 2; var Type = { BOX: 'Box', CYLINDER: 'Cylinder', SPHERE: 'Sphere', HULL: 'ConvexPolyhedron', MESH: 'Trimesh' }; /** * Given a THREE.Object3D instance, creates a corresponding CANNON shape. * @param {THREE.Object3D} object * @return {CANNON.Shape} */ module.exports = CANNON.mesh2shape = function (object, options) { options = options || {}; var geometry; if (options.type === Type.BOX) { return createBoundingBoxShape(object); } else if (options.type === Type.CYLINDER) { return createBoundingCylinderShape(object, options); } else if (options.type === Type.SPHERE) { return createBoundingSphereShape(object, options); } else if (options.type === Type.HULL) { return createConvexPolyhedron(object); } else if (options.type === Type.MESH) { geometry = getGeometry(object); return geometry ? createTrimeshShape(geometry) : null; } else if (options.type) { throw new Error('[CANNON.mesh2shape] Invalid type "%s".', options.type); } geometry = getGeometry(object); if (!geometry) return null; var type = geometry.metadata ? geometry.metadata.type : geometry.type; switch (type) { case 'BoxGeometry': case 'BoxBufferGeometry': return createBoxShape(geometry); case 'CylinderGeometry': case 'CylinderBufferGeometry': return createCylinderShape(geometry); case 'PlaneGeometry': case 'PlaneBufferGeometry': return createPlaneShape(geometry); case 'SphereGeometry': case 'SphereBufferGeometry': return createSphereShape(geometry); case 'TubeGeometry': case 'Geometry': case 'BufferGeometry': return createBoundingBoxShape(object); default: console.warn('Unrecognized geometry: "%s". Using bounding box as shape.', geometry.type); return createBoxShape(geometry); } }; CANNON.mesh2shape.Type = Type; /****************************************************************************** * Shape construction */ /** * @param {THREE.Geometry} geometry * @return {CANNON.Shape} */ function createBoxShape (geometry) { var vertices = getVertices(geometry); if (!vertices.length) return null; geometry.computeBoundingBox(); var box = geometry.boundingBox; return new CANNON.Box(new CANNON.Vec3( (box.max.x - box.min.x) / 2, (box.max.y - box.min.y) / 2, (box.max.z - box.min.z) / 2 )); } /** * Bounding box needs to be computed with the entire mesh, not just geometry. * @param {THREE.Object3D} mesh * @return {CANNON.Shape} */ function createBoundingBoxShape (object) { var shape, localPosition, worldPosition, box = new THREE.Box3(); box.setFromObject(object); if (!isFinite(box.min.lengthSq())) return null; shape = new CANNON.Box(new CANNON.Vec3( (box.max.x - box.min.x) / 2, (box.max.y - box.min.y) / 2, (box.max.z - box.min.z) / 2 )); object.updateMatrixWorld(); worldPosition = new THREE.Vector3(); worldPosition.setFromMatrixPosition(object.matrixWorld); localPosition = box.translate(worldPosition.negate()).getCenter(); if (localPosition.lengthSq()) { shape.offset = localPosition; } return shape; } /** * Computes 3D convex hull as a CANNON.ConvexPolyhedron. * @param {THREE.Object3D} mesh * @return {CANNON.Shape} */ function createConvexPolyhedron (object) { var i, vertices, faces, hull, eps = 1e-4, geometry = getGeometry(object); if (!geometry || !geometry.vertices.length) return null; // Perturb. for (i = 0; i < geometry.vertices.length; i++) { geometry.vertices[i].x += (Math.random() - 0.5) * eps; geometry.vertices[i].y += (Math.random() - 0.5) * eps; geometry.vertices[i].z += (Math.random() - 0.5) * eps; } // Compute the 3D convex hull. hull = quickhull(geometry); // Convert from THREE.Vector3 to CANNON.Vec3. vertices = new Array(hull.vertices.length); for (i = 0; i < hull.vertices.length; i++) { vertices[i] = new CANNON.Vec3(hull.vertices[i].x, hull.vertices[i].y, hull.vertices[i].z); } // Convert from THREE.Face to Array. faces = new Array(hull.faces.length); for (i = 0; i < hull.faces.length; i++) { faces[i] = [hull.faces[i].a, hull.faces[i].b, hull.faces[i].c]; } return new CANNON.ConvexPolyhedron(vertices, faces); } /** * @param {THREE.Geometry} geometry * @return {CANNON.Shape} */ function createCylinderShape (geometry) { var shape, params = geometry.metadata ? geometry.metadata.parameters : geometry.parameters; shape = new CANNON.Cylinder( params.radiusTop, params.radiusBottom, params.height, params.radialSegments ); // Include metadata for serialization. shape._type = CANNON.Shape.types.CYLINDER; // Patch schteppe/cannon.js#329. shape.radiusTop = params.radiusTop; shape.radiusBottom = params.radiusBottom; shape.height = params.height; shape.numSegments = params.radialSegments; shape.orientation = new CANNON.Quaternion(); shape.orientation.setFromEuler(THREE.Math.degToRad(-90), 0, 0, 'XYZ').normalize(); return shape; } /** * @param {THREE.Object3D} object * @return {CANNON.Shape} */ function createBoundingCylinderShape (object, options) { var shape, height, radius, box = new THREE.Box3(), axes = ['x', 'y', 'z'], majorAxis = options.cylinderAxis || 'y', minorAxes = axes.splice(axes.indexOf(majorAxis), 1) && axes; box.setFromObject(object); if (!isFinite(box.min.lengthSq())) return null; // Compute cylinder dimensions. height = box.max[majorAxis] - box.min[majorAxis]; radius = 0.5 * Math.max( box.max[minorAxes[0]] - box.min[minorAxes[0]], box.max[minorAxes[1]] - box.min[minorAxes[1]] ); // Create shape. shape = new CANNON.Cylinder(radius, radius, height, 12); // Include metadata for serialization. shape._type = CANNON.Shape.types.CYLINDER; // Patch schteppe/cannon.js#329. shape.radiusTop = radius; shape.radiusBottom = radius; shape.height = height; shape.numSegments = 12; shape.orientation = new CANNON.Quaternion(); shape.orientation.setFromEuler( majorAxis === 'y' ? PI_2 : 0, majorAxis === 'z' ? PI_2 : 0, 0, 'XYZ' ).normalize(); return shape; } /** * @param {THREE.Geometry} geometry * @return {CANNON.Shape} */ function createPlaneShape (geometry) { geometry.computeBoundingBox(); var box = geometry.boundingBox; return new CANNON.Box(new CANNON.Vec3( (box.max.x - box.min.x) / 2 || 0.1, (box.max.y - box.min.y) / 2 || 0.1, (box.max.z - box.min.z) / 2 || 0.1 )); } /** * @param {THREE.Geometry} geometry * @return {CANNON.Shape} */ function createSphereShape (geometry) { var params = geometry.metadata ? geometry.metadata.parameters : geometry.parameters; return new CANNON.Sphere(params.radius); } /** * @param {THREE.Object3D} object * @return {CANNON.Shape} */ function createBoundingSphereShape (object, options) { if (options.sphereRadius) { return new CANNON.Sphere(options.sphereRadius); } var geometry = getGeometry(object); if (!geometry) return null; geometry.computeBoundingSphere(); return new CANNON.Sphere(geometry.boundingSphere.radius); } /** * @param {THREE.Geometry} geometry * @return {CANNON.Shape} */ function createTrimeshShape (geometry) { var indices, vertices = getVertices(geometry); if (!vertices.length) return null; indices = Object.keys(vertices).map(Number); return new CANNON.Trimesh(vertices, indices); } /****************************************************************************** * Utils */ /** * Returns a single geometry for the given object. If the object is compound, * its geometries are automatically merged. * @param {THREE.Object3D} object * @return {THREE.Geometry} */ function getGeometry (object) { var matrix, mesh, meshes = getMeshes(object), tmp = new THREE.Geometry(), combined = new THREE.Geometry(); if (meshes.length === 0) return null; // Apply scale – it can't easily be applied to a CANNON.Shape later. if (meshes.length === 1) { var position = new THREE.Vector3(), quaternion = new THREE.Quaternion(), scale = new THREE.Vector3(); if (meshes[0].geometry.isBufferGeometry) { if (meshes[0].geometry.attributes.position) { tmp.fromBufferGeometry(meshes[0].geometry); } } else { tmp = meshes[0].geometry.clone(); } tmp.metadata = meshes[0].geometry.metadata; meshes[0].updateMatrixWorld(); meshes[0].matrixWorld.decompose(position, quaternion, scale); return tmp.scale(scale.x, scale.y, scale.z); } // Recursively merge geometry, preserving local transforms. while ((mesh = meshes.pop())) { mesh.updateMatrixWorld(); if (mesh.geometry.isBufferGeometry) { tmp.fromBufferGeometry(mesh.geometry); combined.merge(tmp, mesh.matrixWorld); } else { combined.merge(mesh.geometry, mesh.matrixWorld); } } matrix = new THREE.Matrix4(); matrix.scale(object.scale); combined.applyMatrix(matrix); return combined; } /** * @param {THREE.Geometry} geometry * @return {Array} */ function getVertices (geometry) { if (!geometry.attributes) { geometry = new THREE.BufferGeometry().fromGeometry(geometry); } return (geometry.attributes.position || {}).array || []; } /** * Returns a flat array of THREE.Mesh instances from the given object. If * nested transformations are found, they are applied to child meshes * as mesh.userData.matrix, so that each mesh has its position/rotation/scale * independently of all of its parents except the top-level object. * @param {THREE.Object3D} object * @return {Array} */ function getMeshes (object) { var meshes = []; object.traverse(function (o) { if (o.type === 'Mesh') { meshes.push(o); } }); return meshes; } },{"./lib/THREE.quickhull":85,"cannon":23}],85:[function(require,module,exports){ /** QuickHull --------- The MIT License Copyright © 2010-2014 three.js authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @author mark lundin / http://mark-lundin.com This is a 3D implementation of the Quick Hull algorithm. It is a fast way of computing a convex hull with average complexity of O(n log(n)). It uses depends on three.js and is supposed to create THREE.Geometry. It's also very messy */ module.exports = (function(){ var faces = [], faceStack = [], i, NUM_POINTS, extremes, max = 0, dcur, current, j, v0, v1, v2, v3, N, D; var ab, ac, ax, suba, subb, normal, diff, subaA, subaB, subC; function reset(){ ab = new THREE.Vector3(), ac = new THREE.Vector3(), ax = new THREE.Vector3(), suba = new THREE.Vector3(), subb = new THREE.Vector3(), normal = new THREE.Vector3(), diff = new THREE.Vector3(), subaA = new THREE.Vector3(), subaB = new THREE.Vector3(), subC = new THREE.Vector3(); } //temporary vectors function process( points ){ // Iterate through all the faces and remove while( faceStack.length > 0 ){ cull( faceStack.shift(), points ); } } var norm = function(){ var ca = new THREE.Vector3(), ba = new THREE.Vector3(), N = new THREE.Vector3(); return function( a, b, c ){ ca.subVectors( c, a ); ba.subVectors( b, a ); N.crossVectors( ca, ba ); return N.normalize(); } }(); function getNormal( face, points ){ if( face.normal !== undefined ) return face.normal; var p0 = points[face[0]], p1 = points[face[1]], p2 = points[face[2]]; ab.subVectors( p1, p0 ); ac.subVectors( p2, p0 ); normal.crossVectors( ac, ab ); normal.normalize(); return face.normal = normal.clone(); } function assignPoints( face, pointset, points ){ // ASSIGNING POINTS TO FACE var p0 = points[face[0]], dots = [], apex, norm = getNormal( face, points ); // Sory all the points by there distance from the plane pointset.sort( function( aItem, bItem ){ dots[aItem.x/3] = dots[aItem.x/3] !== undefined ? dots[aItem.x/3] : norm.dot( suba.subVectors( aItem, p0 )); dots[bItem.x/3] = dots[bItem.x/3] !== undefined ? dots[bItem.x/3] : norm.dot( subb.subVectors( bItem, p0 )); return dots[aItem.x/3] - dots[bItem.x/3] ; }); //TODO :: Must be a faster way of finding and index in this array var index = pointset.length; if( index === 1 ) dots[pointset[0].x/3] = norm.dot( suba.subVectors( pointset[0], p0 )); while( index-- > 0 && dots[pointset[index].x/3] > 0 ) var point; if( index + 1 < pointset.length && dots[pointset[index+1].x/3] > 0 ){ face.visiblePoints = pointset.splice( index + 1 ); } } function cull( face, points ){ var i = faces.length, dot, visibleFace, currentFace, visibleFaces = [face]; var apex = points.indexOf( face.visiblePoints.pop() ); // Iterate through all other faces... while( i-- > 0 ){ currentFace = faces[i]; if( currentFace !== face ){ // ...and check if they're pointing in the same direction dot = getNormal( currentFace, points ).dot( diff.subVectors( points[apex], points[currentFace[0]] )); if( dot > 0 ){ visibleFaces.push( currentFace ); } } } var index, neighbouringIndex, vertex; // Determine Perimeter - Creates a bounded horizon // 1. Pick an edge A out of all possible edges // 2. Check if A is shared by any other face. a->b === b->a // 2.1 for each edge in each triangle, isShared = ( f1.a == f2.a && f1.b == f2.b ) || ( f1.a == f2.b && f1.b == f2.a ) // 3. If not shared, then add to convex horizon set, //pick an end point (N) of the current edge A and choose a new edge NA connected to A. //Restart from 1. // 4. If A is shared, it is not an horizon edge, therefore flag both faces that share this edge as candidates for culling // 5. If candidate geometry is a degenrate triangle (ie. the tangent space normal cannot be computed) then remove that triangle from all further processing var j = i = visibleFaces.length; var isDistinct = false, hasOneVisibleFace = i === 1, cull = [], perimeter = [], edgeIndex = 0, compareFace, nextIndex, a, b; var allPoints = []; var originFace = [visibleFaces[0][0], visibleFaces[0][1], visibleFaces[0][1], visibleFaces[0][2], visibleFaces[0][2], visibleFaces[0][0]]; if( visibleFaces.length === 1 ){ currentFace = visibleFaces[0]; perimeter = [currentFace[0], currentFace[1], currentFace[1], currentFace[2], currentFace[2], currentFace[0]]; // remove visible face from list of faces if( faceStack.indexOf( currentFace ) > -1 ){ faceStack.splice( faceStack.indexOf( currentFace ), 1 ); } if( currentFace.visiblePoints ) allPoints = allPoints.concat( currentFace.visiblePoints ); faces.splice( faces.indexOf( currentFace ), 1 ); }else{ while( i-- > 0 ){ // for each visible face currentFace = visibleFaces[i]; // remove visible face from list of faces if( faceStack.indexOf( currentFace ) > -1 ){ faceStack.splice( faceStack.indexOf( currentFace ), 1 ); } if( currentFace.visiblePoints ) allPoints = allPoints.concat( currentFace.visiblePoints ); faces.splice( faces.indexOf( currentFace ), 1 ); var isSharedEdge; cEdgeIndex = 0; while( cEdgeIndex < 3 ){ // Iterate through it's edges isSharedEdge = false; j = visibleFaces.length; a = currentFace[cEdgeIndex] b = currentFace[(cEdgeIndex+1)%3]; while( j-- > 0 && !isSharedEdge ){ // find another visible faces compareFace = visibleFaces[j]; edgeIndex = 0; // isSharedEdge = compareFace == currentFace; if( compareFace !== currentFace ){ while( edgeIndex < 3 && !isSharedEdge ){ //Check all it's indices nextIndex = ( edgeIndex + 1 ); isSharedEdge = ( compareFace[edgeIndex] === a && compareFace[nextIndex%3] === b ) || ( compareFace[edgeIndex] === b && compareFace[nextIndex%3] === a ); edgeIndex++; } } } if( !isSharedEdge || hasOneVisibleFace ){ perimeter.push( a ); perimeter.push( b ); } cEdgeIndex++; } } } // create new face for all pairs around edge i = 0; var l = perimeter.length/2; var f; while( i < l ){ f = [ perimeter[i*2+1], apex, perimeter[i*2] ]; assignPoints( f, allPoints, points ); faces.push( f ) if( f.visiblePoints !== undefined )faceStack.push( f ); i++; } } var distSqPointSegment = function(){ var ab = new THREE.Vector3(), ac = new THREE.Vector3(), bc = new THREE.Vector3(); return function( a, b, c ){ ab.subVectors( b, a ); ac.subVectors( c, a ); bc.subVectors( c, b ); var e = ac.dot(ab); if (e < 0.0) return ac.dot( ac ); var f = ab.dot( ab ); if (e >= f) return bc.dot( bc ); return ac.dot( ac ) - e * e / f; } }(); return function( geometry ){ reset(); points = geometry.vertices; faces = [], faceStack = [], i = NUM_POINTS = points.length, extremes = points.slice( 0, 6 ), max = 0; /* * FIND EXTREMETIES */ while( i-- > 0 ){ if( points[i].x < extremes[0].x ) extremes[0] = points[i]; if( points[i].x > extremes[1].x ) extremes[1] = points[i]; if( points[i].y < extremes[2].y ) extremes[2] = points[i]; if( points[i].y < extremes[3].y ) extremes[3] = points[i]; if( points[i].z < extremes[4].z ) extremes[4] = points[i]; if( points[i].z < extremes[5].z ) extremes[5] = points[i]; } /* * Find the longest line between the extremeties */ j = i = 6; while( i-- > 0 ){ j = i - 1; while( j-- > 0 ){ if( max < (dcur = extremes[i].distanceToSquared( extremes[j] )) ){ max = dcur; v0 = extremes[ i ]; v1 = extremes[ j ]; } } } // 3. Find the most distant point to the line segment, this creates a plane i = 6; max = 0; while( i-- > 0 ){ dcur = distSqPointSegment( v0, v1, extremes[i]); if( max < dcur ){ max = dcur; v2 = extremes[ i ]; } } // 4. Find the most distant point to the plane. N = norm(v0, v1, v2); D = N.dot( v0 ); max = 0; i = NUM_POINTS; while( i-- > 0 ){ dcur = Math.abs( points[i].dot( N ) - D ); if( max < dcur ){ max = dcur; v3 = points[i]; } } var v0Index = points.indexOf( v0 ), v1Index = points.indexOf( v1 ), v2Index = points.indexOf( v2 ), v3Index = points.indexOf( v3 ); // We now have a tetrahedron as the base geometry. // Now we must subdivide the var tetrahedron =[ [ v2Index, v1Index, v0Index ], [ v1Index, v3Index, v0Index ], [ v2Index, v3Index, v1Index ], [ v0Index, v3Index, v2Index ], ]; subaA.subVectors( v1, v0 ).normalize(); subaB.subVectors( v2, v0 ).normalize(); subC.subVectors ( v3, v0 ).normalize(); var sign = subC.dot( new THREE.Vector3().crossVectors( subaB, subaA )); // Reverse the winding if negative sign if( sign < 0 ){ tetrahedron[0].reverse(); tetrahedron[1].reverse(); tetrahedron[2].reverse(); tetrahedron[3].reverse(); } //One for each face of the pyramid var pointsCloned = points.slice(); pointsCloned.splice( pointsCloned.indexOf( v0 ), 1 ); pointsCloned.splice( pointsCloned.indexOf( v1 ), 1 ); pointsCloned.splice( pointsCloned.indexOf( v2 ), 1 ); pointsCloned.splice( pointsCloned.indexOf( v3 ), 1 ); var i = tetrahedron.length; while( i-- > 0 ){ assignPoints( tetrahedron[i], pointsCloned, points ); if( tetrahedron[i].visiblePoints !== undefined ){ faceStack.push( tetrahedron[i] ); } faces.push( tetrahedron[i] ); } process( points ); // Assign to our geometry object var ll = faces.length; while( ll-- > 0 ){ geometry.faces[ll] = new THREE.Face3( faces[ll][2], faces[ll][1], faces[ll][0], faces[ll].normal ) } geometry.normalsNeedUpdate = true; return geometry; } }()) },{}],86:[function(require,module,exports){ var EPS = 0.1; module.exports = { schema: { enabled: {default: true}, mode: {default: 'teleport', oneOf: ['teleport', 'animate']}, animateSpeed: {default: 3.0} }, init: function () { this.active = true; this.checkpoint = null; this.offset = new THREE.Vector3(); this.position = new THREE.Vector3(); this.targetPosition = new THREE.Vector3(); }, play: function () { this.active = true; }, pause: function () { this.active = false; }, setCheckpoint: function (checkpoint) { var el = this.el; if (!this.active) return; if (this.checkpoint === checkpoint) return; if (this.checkpoint) { el.emit('navigation-end', {checkpoint: this.checkpoint}); } this.checkpoint = checkpoint; this.sync(); // Ignore new checkpoint if we're already there. if (this.position.distanceTo(this.targetPosition) < EPS) { this.checkpoint = null; return; } el.emit('navigation-start', {checkpoint: checkpoint}); if (this.data.mode === 'teleport') { this.el.setAttribute('position', this.targetPosition); this.checkpoint = null; el.emit('navigation-end', {checkpoint: checkpoint}); } }, isVelocityActive: function () { return !!(this.active && this.checkpoint); }, getVelocity: function () { if (!this.active) return; var data = this.data, offset = this.offset, position = this.position, targetPosition = this.targetPosition, checkpoint = this.checkpoint; this.sync(); if (position.distanceTo(targetPosition) < EPS) { this.checkpoint = null; this.el.emit('navigation-end', {checkpoint: checkpoint}); return offset.set(0, 0, 0); } offset.setLength(data.animateSpeed); return offset; }, sync: function () { var offset = this.offset, position = this.position, targetPosition = this.targetPosition; position.copy(this.el.getAttribute('position')); targetPosition.copy(this.checkpoint.object3D.getWorldPosition()); targetPosition.add(this.checkpoint.components.checkpoint.getOffset()); offset.copy(targetPosition).sub(position); } }; },{}],87:[function(require,module,exports){ /** * Gamepad controls for A-Frame. * * Stripped-down version of: https://github.com/donmccurdy/aframe-gamepad-controls * * For more information about the Gamepad API, see: * https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API/Using_the_Gamepad_API */ var GamepadButton = require('../../lib/GamepadButton'), GamepadButtonEvent = require('../../lib/GamepadButtonEvent'); var JOYSTICK_EPS = 0.2; module.exports = { /******************************************************************* * Statics */ GamepadButton: GamepadButton, /******************************************************************* * Schema */ schema: { // Controller 0-3 controller: { default: 0, oneOf: [0, 1, 2, 3] }, // Enable/disable features enabled: { default: true }, // Debugging debug: { default: false } }, /******************************************************************* * Core */ /** * Called once when component is attached. Generally for initial setup. */ init: function () { var scene = this.el.sceneEl; this.prevTime = window.performance.now(); // Button state this.buttons = {}; scene.addBehavior(this); }, /** * Called when component is attached and when component data changes. * Generally modifies the entity based on the data. */ update: function () { this.tick(); }, /** * Called on each iteration of main render loop. */ tick: function () { this.updateButtonState(); }, /** * Called when a component is removed (e.g., via removeAttribute). * Generally undoes all modifications to the entity. */ remove: function () { }, /******************************************************************* * Universal controls - movement */ isVelocityActive: function () { if (!this.data.enabled || !this.isConnected()) return false; var dpad = this.getDpad(), joystick0 = this.getJoystick(0), inputX = dpad.x || joystick0.x, inputY = dpad.y || joystick0.y; return Math.abs(inputX) > JOYSTICK_EPS || Math.abs(inputY) > JOYSTICK_EPS; }, getVelocityDelta: function () { var dpad = this.getDpad(), joystick0 = this.getJoystick(0), inputX = dpad.x || joystick0.x, inputY = dpad.y || joystick0.y, dVelocity = new THREE.Vector3(); if (Math.abs(inputX) > JOYSTICK_EPS) { dVelocity.x += inputX; } if (Math.abs(inputY) > JOYSTICK_EPS) { dVelocity.z += inputY; } return dVelocity; }, /******************************************************************* * Universal controls - rotation */ isRotationActive: function () { if (!this.data.enabled || !this.isConnected()) return false; var joystick1 = this.getJoystick(1); return Math.abs(joystick1.x) > JOYSTICK_EPS || Math.abs(joystick1.y) > JOYSTICK_EPS; }, getRotationDelta: function () { var lookVector = this.getJoystick(1); if (Math.abs(lookVector.x) <= JOYSTICK_EPS) lookVector.x = 0; if (Math.abs(lookVector.y) <= JOYSTICK_EPS) lookVector.y = 0; return lookVector; }, /******************************************************************* * Button events */ updateButtonState: function () { var gamepad = this.getGamepad(); if (this.data.enabled && gamepad) { // Fire DOM events for button state changes. for (var i = 0; i < gamepad.buttons.length; i++) { if (gamepad.buttons[i].pressed && !this.buttons[i]) { this.emit(new GamepadButtonEvent('gamepadbuttondown', i, gamepad.buttons[i])); } else if (!gamepad.buttons[i].pressed && this.buttons[i]) { this.emit(new GamepadButtonEvent('gamepadbuttonup', i, gamepad.buttons[i])); } this.buttons[i] = gamepad.buttons[i].pressed; } } else if (Object.keys(this.buttons)) { // Reset state if controls are disabled or controller is lost. this.buttons = {}; } }, emit: function (event) { // Emit original event. this.el.emit(event.type, event); // Emit convenience event, identifying button index. this.el.emit( event.type + ':' + event.index, new GamepadButtonEvent(event.type, event.index, event) ); }, /******************************************************************* * Gamepad state */ /** * Returns the Gamepad instance attached to the component. If connected, * a proxy-controls component may provide access to Gamepad input from a * remote device. * * @return {Gamepad} */ getGamepad: function () { var localGamepad = navigator.getGamepads && navigator.getGamepads()[this.data.controller], proxyControls = this.el.sceneEl.components['proxy-controls'], proxyGamepad = proxyControls && proxyControls.isConnected() && proxyControls.getGamepad(this.data.controller); return proxyGamepad || localGamepad; }, /** * Returns the state of the given button. * @param {number} index The button (0-N) for which to find state. * @return {GamepadButton} */ getButton: function (index) { return this.getGamepad().buttons[index]; }, /** * Returns state of the given axis. Axes are labelled 0-N, where 0-1 will * represent X/Y on the first joystick, and 2-3 X/Y on the second. * @param {number} index The axis (0-N) for which to find state. * @return {number} On the interval [-1,1]. */ getAxis: function (index) { return this.getGamepad().axes[index]; }, /** * Returns the state of the given joystick (0 or 1) as a THREE.Vector2. * @param {number} id The joystick (0, 1) for which to find state. * @return {THREE.Vector2} */ getJoystick: function (index) { var gamepad = this.getGamepad(); switch (index) { case 0: return new THREE.Vector2(gamepad.axes[0], gamepad.axes[1]); case 1: return new THREE.Vector2(gamepad.axes[2], gamepad.axes[3]); default: throw new Error('Unexpected joystick index "%d".', index); } }, /** * Returns the state of the dpad as a THREE.Vector2. * @return {THREE.Vector2} */ getDpad: function () { var gamepad = this.getGamepad(); if (!gamepad.buttons[GamepadButton.DPAD_RIGHT]) { return new THREE.Vector2(); } return new THREE.Vector2( (gamepad.buttons[GamepadButton.DPAD_RIGHT].pressed ? 1 : 0) + (gamepad.buttons[GamepadButton.DPAD_LEFT].pressed ? -1 : 0), (gamepad.buttons[GamepadButton.DPAD_UP].pressed ? -1 : 0) + (gamepad.buttons[GamepadButton.DPAD_DOWN].pressed ? 1 : 0) ); }, /** * Returns true if the gamepad is currently connected to the system. * @return {boolean} */ isConnected: function () { var gamepad = this.getGamepad(); return !!(gamepad && gamepad.connected); }, /** * Returns a string containing some information about the controller. Result * may vary across browsers, for a given controller. * @return {string} */ getID: function () { return this.getGamepad().id; } }; },{"../../lib/GamepadButton":4,"../../lib/GamepadButtonEvent":5}],88:[function(require,module,exports){ var radToDeg = THREE.Math.radToDeg, isMobile = AFRAME.utils.device.isMobile(); module.exports = { schema: { enabled: {default: true}, standing: {default: true} }, init: function () { this.isPositionCalibrated = false; this.dolly = new THREE.Object3D(); this.hmdEuler = new THREE.Euler(); this.previousHMDPosition = new THREE.Vector3(); this.deltaHMDPosition = new THREE.Vector3(); this.vrControls = new THREE.VRControls(this.dolly); this.rotation = new THREE.Vector3(); }, update: function () { var data = this.data; var vrControls = this.vrControls; vrControls.standing = data.standing; vrControls.update(); }, tick: function () { this.vrControls.update(); }, remove: function () { this.vrControls.dispose(); }, isRotationActive: function () { var hmdEuler = this.hmdEuler; if (!this.data.enabled || !(this.el.sceneEl.is('vr-mode') || isMobile)) { return false; } hmdEuler.setFromQuaternion(this.dolly.quaternion, 'YXZ'); return !isNullVector(hmdEuler); }, getRotation: function () { var hmdEuler = this.hmdEuler; return this.rotation.set( radToDeg(hmdEuler.x), radToDeg(hmdEuler.y), radToDeg(hmdEuler.z) ); }, isVelocityActive: function () { var deltaHMDPosition = this.deltaHMDPosition; var previousHMDPosition = this.previousHMDPosition; var currentHMDPosition = this.calculateHMDPosition(); this.isPositionCalibrated = this.isPositionCalibrated || !isNullVector(previousHMDPosition); if (!this.data.enabled || !this.el.sceneEl.is('vr-mode') || isMobile) { return false; } deltaHMDPosition.copy(currentHMDPosition).sub(previousHMDPosition); previousHMDPosition.copy(currentHMDPosition); return this.isPositionCalibrated && !isNullVector(deltaHMDPosition); }, getPositionDelta: function () { return this.deltaHMDPosition; }, calculateHMDPosition: function () { var dolly = this.dolly; var position = new THREE.Vector3(); dolly.updateMatrix(); position.setFromMatrixPosition(dolly.matrix); return position; } }; function isNullVector (vector) { return vector.x === 0 && vector.y === 0 && vector.z === 0; } },{}],89:[function(require,module,exports){ var physics = require('aframe-physics-system'); module.exports = { 'checkpoint-controls': require('./checkpoint-controls'), 'gamepad-controls': require('./gamepad-controls'), 'hmd-controls': require('./hmd-controls'), 'keyboard-controls': require('./keyboard-controls'), 'mouse-controls': require('./mouse-controls'), 'touch-controls': require('./touch-controls'), 'universal-controls': require('./universal-controls'), registerAll: function (AFRAME) { if (this._registered) return; AFRAME = AFRAME || window.AFRAME; physics.registerAll(); if (!AFRAME.components['checkpoint-controls']) AFRAME.registerComponent('checkpoint-controls', this['checkpoint-controls']); if (!AFRAME.components['gamepad-controls']) AFRAME.registerComponent('gamepad-controls', this['gamepad-controls']); if (!AFRAME.components['hmd-controls']) AFRAME.registerComponent('hmd-controls', this['hmd-controls']); if (!AFRAME.components['keyboard-controls']) AFRAME.registerComponent('keyboard-controls', this['keyboard-controls']); if (!AFRAME.components['mouse-controls']) AFRAME.registerComponent('mouse-controls', this['mouse-controls']); if (!AFRAME.components['touch-controls']) AFRAME.registerComponent('touch-controls', this['touch-controls']); if (!AFRAME.components['universal-controls']) AFRAME.registerComponent('universal-controls', this['universal-controls']); this._registered = true; } }; },{"./checkpoint-controls":86,"./gamepad-controls":87,"./hmd-controls":88,"./keyboard-controls":90,"./mouse-controls":91,"./touch-controls":92,"./universal-controls":93,"aframe-physics-system":11}],90:[function(require,module,exports){ require('../../lib/keyboard.polyfill'); var MAX_DELTA = 0.2, PROXY_FLAG = '__keyboard-controls-proxy'; var KeyboardEvent = window.KeyboardEvent; /** * Keyboard Controls component. * * Stripped-down version of: https://github.com/donmccurdy/aframe-keyboard-controls * * Bind keyboard events to components, or control your entities with the WASD keys. * * Why use KeyboardEvent.code? "This is set to a string representing the key that was pressed to * generate the KeyboardEvent, without taking the current keyboard layout (e.g., QWERTY vs. * Dvorak), locale (e.g., English vs. French), or any modifier keys into account. This is useful * when you care about which physical key was pressed, rather thanwhich character it corresponds * to. For example, if you’re a writing a game, you might want a certain set of keys to move the * player in different directions, and that mapping should ideally be independent of keyboard * layout. See: https://developers.google.com/web/updates/2016/04/keyboardevent-keys-codes * * @namespace wasd-controls * keys the entity moves and if you release it will stop. Easing simulates friction. * to the entity when pressing the keys. * @param {bool} [enabled=true] - To completely enable or disable the controls */ module.exports = { schema: { enabled: { default: true }, debug: { default: false } }, init: function () { this.dVelocity = new THREE.Vector3(); this.localKeys = {}; this.listeners = { keydown: this.onKeyDown.bind(this), keyup: this.onKeyUp.bind(this), blur: this.onBlur.bind(this) }; this.attachEventListeners(); }, /******************************************************************* * Movement */ isVelocityActive: function () { return this.data.enabled && !!Object.keys(this.getKeys()).length; }, getVelocityDelta: function () { var data = this.data, keys = this.getKeys(); this.dVelocity.set(0, 0, 0); if (data.enabled) { if (keys.KeyW || keys.ArrowUp) { this.dVelocity.z -= 1; } if (keys.KeyA || keys.ArrowLeft) { this.dVelocity.x -= 1; } if (keys.KeyS || keys.ArrowDown) { this.dVelocity.z += 1; } if (keys.KeyD || keys.ArrowRight) { this.dVelocity.x += 1; } } return this.dVelocity.clone(); }, /******************************************************************* * Events */ play: function () { this.attachEventListeners(); }, pause: function () { this.removeEventListeners(); }, remove: function () { this.pause(); }, attachEventListeners: function () { window.addEventListener('keydown', this.listeners.keydown, false); window.addEventListener('keyup', this.listeners.keyup, false); window.addEventListener('blur', this.listeners.blur, false); }, removeEventListeners: function () { window.removeEventListener('keydown', this.listeners.keydown); window.removeEventListener('keyup', this.listeners.keyup); window.removeEventListener('blur', this.listeners.blur); }, onKeyDown: function (event) { if (AFRAME.utils.shouldCaptureKeyEvent(event)) { this.localKeys[event.code] = true; this.emit(event); } }, onKeyUp: function (event) { if (AFRAME.utils.shouldCaptureKeyEvent(event)) { delete this.localKeys[event.code]; this.emit(event); } }, onBlur: function () { for (var code in this.localKeys) { if (this.localKeys.hasOwnProperty(code)) { delete this.localKeys[code]; } } }, emit: function (event) { // TODO - keydown only initially? // TODO - where the f is the spacebar // Emit original event. if (PROXY_FLAG in event) { // TODO - Method never triggered. this.el.emit(event.type, event); } // Emit convenience event, identifying key. this.el.emit(event.type + ':' + event.code, new KeyboardEvent(event.type, event)); if (this.data.debug) console.log(event.type + ':' + event.code); }, /******************************************************************* * Accessors */ isPressed: function (code) { return code in this.getKeys(); }, getKeys: function () { if (this.isProxied()) { return this.el.sceneEl.components['proxy-controls'].getKeyboard(); } return this.localKeys; }, isProxied: function () { var proxyControls = this.el.sceneEl.components['proxy-controls']; return proxyControls && proxyControls.isConnected(); } }; },{"../../lib/keyboard.polyfill":10}],91:[function(require,module,exports){ document.exitPointerLock = document.exitPointerLock || document.mozExitPointerLock; /** * Mouse + Pointerlock controls. * * Based on: https://github.com/aframevr/aframe/pull/1056 */ module.exports = { schema: { enabled: { default: true }, pointerlockEnabled: { default: true }, sensitivity: { default: 1 / 25 } }, init: function () { this.mouseDown = false; this.pointerLocked = false; this.lookVector = new THREE.Vector2(); this.bindMethods(); }, update: function (previousData) { var data = this.data; if (previousData.pointerlockEnabled && !data.pointerlockEnabled && this.pointerLocked) { document.exitPointerLock(); } }, play: function () { this.addEventListeners(); }, pause: function () { this.removeEventListeners(); this.lookVector.set(0, 0); }, remove: function () { this.pause(); }, bindMethods: function () { this.onMouseDown = this.onMouseDown.bind(this); this.onMouseMove = this.onMouseMove.bind(this); this.onMouseUp = this.onMouseUp.bind(this); this.onMouseUp = this.onMouseUp.bind(this); this.onPointerLockChange = this.onPointerLockChange.bind(this); this.onPointerLockChange = this.onPointerLockChange.bind(this); this.onPointerLockChange = this.onPointerLockChange.bind(this); }, addEventListeners: function () { var sceneEl = this.el.sceneEl; var canvasEl = sceneEl.canvas; var data = this.data; if (!canvasEl) { sceneEl.addEventListener('render-target-loaded', this.addEventListeners.bind(this)); return; } canvasEl.addEventListener('mousedown', this.onMouseDown, false); canvasEl.addEventListener('mousemove', this.onMouseMove, false); canvasEl.addEventListener('mouseup', this.onMouseUp, false); canvasEl.addEventListener('mouseout', this.onMouseUp, false); if (data.pointerlockEnabled) { document.addEventListener('pointerlockchange', this.onPointerLockChange, false); document.addEventListener('mozpointerlockchange', this.onPointerLockChange, false); document.addEventListener('pointerlockerror', this.onPointerLockError, false); } }, removeEventListeners: function () { var canvasEl = this.el.sceneEl && this.el.sceneEl.canvas; if (canvasEl) { canvasEl.removeEventListener('mousedown', this.onMouseDown, false); canvasEl.removeEventListener('mousemove', this.onMouseMove, false); canvasEl.removeEventListener('mouseup', this.onMouseUp, false); canvasEl.removeEventListener('mouseout', this.onMouseUp, false); } document.removeEventListener('pointerlockchange', this.onPointerLockChange, false); document.removeEventListener('mozpointerlockchange', this.onPointerLockChange, false); document.removeEventListener('pointerlockerror', this.onPointerLockError, false); }, isRotationActive: function () { return this.data.enabled && (this.mouseDown || this.pointerLocked); }, /** * Returns the sum of all mouse movement since last call. */ getRotationDelta: function () { var dRotation = this.lookVector.clone().multiplyScalar(this.data.sensitivity); this.lookVector.set(0, 0); return dRotation; }, onMouseMove: function (event) { var previousMouseEvent = this.previousMouseEvent; if (!this.data.enabled || !(this.mouseDown || this.pointerLocked)) { return; } var movementX = event.movementX || event.mozMovementX || 0; var movementY = event.movementY || event.mozMovementY || 0; if (!this.pointerLocked) { movementX = event.screenX - previousMouseEvent.screenX; movementY = event.screenY - previousMouseEvent.screenY; } this.lookVector.x += movementX; this.lookVector.y += movementY; this.previousMouseEvent = event; }, onMouseDown: function (event) { var canvasEl = this.el.sceneEl.canvas, isEditing = (AFRAME.INSPECTOR || {}).opened; this.mouseDown = true; this.previousMouseEvent = event; if (this.data.pointerlockEnabled && !this.pointerLocked && !isEditing) { if (canvasEl.requestPointerLock) { canvasEl.requestPointerLock(); } else if (canvasEl.mozRequestPointerLock) { canvasEl.mozRequestPointerLock(); } } }, onMouseUp: function () { this.mouseDown = false; }, onPointerLockChange: function () { this.pointerLocked = !!(document.pointerLockElement || document.mozPointerLockElement); }, onPointerLockError: function () { this.pointerLocked = false; } }; },{}],92:[function(require,module,exports){ module.exports = { schema: { enabled: { default: true } }, init: function () { this.dVelocity = new THREE.Vector3(); this.bindMethods(); }, play: function () { this.addEventListeners(); }, pause: function () { this.removeEventListeners(); this.dVelocity.set(0, 0, 0); }, remove: function () { this.pause(); }, addEventListeners: function () { var sceneEl = this.el.sceneEl; var canvasEl = sceneEl.canvas; if (!canvasEl) { sceneEl.addEventListener('render-target-loaded', this.addEventListeners.bind(this)); return; } canvasEl.addEventListener('touchstart', this.onTouchStart); canvasEl.addEventListener('touchend', this.onTouchEnd); }, removeEventListeners: function () { var canvasEl = this.el.sceneEl && this.el.sceneEl.canvas; if (!canvasEl) { return; } canvasEl.removeEventListener('touchstart', this.onTouchStart); canvasEl.removeEventListener('touchend', this.onTouchEnd); }, isVelocityActive: function () { return this.data.enabled && this.isMoving; }, getVelocityDelta: function () { this.dVelocity.z = this.isMoving ? -1 : 0; return this.dVelocity.clone(); }, bindMethods: function () { this.onTouchStart = this.onTouchStart.bind(this); this.onTouchEnd = this.onTouchEnd.bind(this); }, onTouchStart: function (e) { this.isMoving = true; e.preventDefault(); }, onTouchEnd: function (e) { this.isMoving = false; e.preventDefault(); } }; },{}],93:[function(require,module,exports){ /** * Universal Controls * * @author Don McCurdy */ var COMPONENT_SUFFIX = '-controls', MAX_DELTA = 0.2, // ms PI_2 = Math.PI / 2; module.exports = { /******************************************************************* * Schema */ dependencies: ['velocity', 'rotation'], schema: { enabled: { default: true }, movementEnabled: { default: true }, movementControls: { default: ['gamepad', 'keyboard', 'touch', 'hmd'] }, rotationEnabled: { default: true }, rotationControls: { default: ['hmd', 'gamepad', 'mouse'] }, movementSpeed: { default: 5 }, // m/s movementEasing: { default: 15 }, // m/s2 movementEasingY: { default: 0 }, // m/s2 movementAcceleration: { default: 80 }, // m/s2 rotationSensitivity: { default: 0.05 }, // radians/frame, ish fly: { default: false }, }, /******************************************************************* * Lifecycle */ init: function () { var rotation = this.el.getAttribute('rotation'); if (this.el.hasAttribute('look-controls') && this.data.rotationEnabled) { console.error('[universal-controls] The `universal-controls` component is a replacement ' + 'for `look-controls`, and cannot be used in combination with it.'); } // Movement this.velocity = new THREE.Vector3(); // Rotation this.pitch = new THREE.Object3D(); this.pitch.rotation.x = THREE.Math.degToRad(rotation.x); this.yaw = new THREE.Object3D(); this.yaw.position.y = 10; this.yaw.rotation.y = THREE.Math.degToRad(rotation.y); this.yaw.add(this.pitch); this.heading = new THREE.Euler(0, 0, 0, 'YXZ'); if (this.el.sceneEl.hasLoaded) { this.injectControls(); } else { this.el.sceneEl.addEventListener('loaded', this.injectControls.bind(this)); } }, update: function () { if (this.el.sceneEl.hasLoaded) { this.injectControls(); } }, injectControls: function () { var i, name, data = this.data; for (i = 0; i < data.movementControls.length; i++) { name = data.movementControls[i] + COMPONENT_SUFFIX; if (!this.el.components[name]) { this.el.setAttribute(name, ''); } } for (i = 0; i < data.rotationControls.length; i++) { name = data.rotationControls[i] + COMPONENT_SUFFIX; if (!this.el.components[name]) { this.el.setAttribute(name, ''); } } }, /******************************************************************* * Tick */ tick: function (t, dt) { if (!dt) { return; } // Update rotation. if (this.data.rotationEnabled) this.updateRotation(dt); // Update velocity. If FPS is too low, reset. if (this.data.movementEnabled && dt / 1000 > MAX_DELTA) { this.velocity.set(0, 0, 0); this.el.setAttribute('velocity', this.velocity); } else { this.updateVelocity(dt); } }, /******************************************************************* * Rotation */ updateRotation: function (dt) { var control, dRotation, data = this.data; for (var i = 0, l = data.rotationControls.length; i < l; i++) { control = this.el.components[data.rotationControls[i] + COMPONENT_SUFFIX]; if (control && control.isRotationActive()) { if (control.getRotationDelta) { dRotation = control.getRotationDelta(dt); dRotation.multiplyScalar(data.rotationSensitivity); this.yaw.rotation.y -= dRotation.x; this.pitch.rotation.x -= dRotation.y; this.pitch.rotation.x = Math.max(-PI_2, Math.min(PI_2, this.pitch.rotation.x)); this.el.setAttribute('rotation', { x: THREE.Math.radToDeg(this.pitch.rotation.x), y: THREE.Math.radToDeg(this.yaw.rotation.y), z: 0 }); } else if (control.getRotation) { this.el.setAttribute('rotation', control.getRotation()); } else { throw new Error('Incompatible rotation controls: %s', data.rotationControls[i]); } break; } } }, /******************************************************************* * Movement */ updateVelocity: function (dt) { var control, dVelocity, velocity = this.velocity, data = this.data; if (data.movementEnabled) { for (var i = 0, l = data.movementControls.length; i < l; i++) { control = this.el.components[data.movementControls[i] + COMPONENT_SUFFIX]; if (control && control.isVelocityActive()) { if (control.getVelocityDelta) { dVelocity = control.getVelocityDelta(dt); } else if (control.getVelocity) { this.el.setAttribute('velocity', control.getVelocity()); return; } else if (control.getPositionDelta) { velocity.copy(control.getPositionDelta(dt).multiplyScalar(1000 / dt)); this.el.setAttribute('velocity', velocity); return; } else { throw new Error('Incompatible movement controls: ', data.movementControls[i]); } break; } } } velocity.copy(this.el.getAttribute('velocity')); velocity.x -= velocity.x * data.movementEasing * dt / 1000; velocity.y -= velocity.y * data.movementEasingY * dt / 1000; velocity.z -= velocity.z * data.movementEasing * dt / 1000; if (dVelocity && data.movementEnabled) { // Set acceleration if (dVelocity.length() > 1) { dVelocity.setLength(this.data.movementAcceleration * dt / 1000); } else { dVelocity.multiplyScalar(this.data.movementAcceleration * dt / 1000); } // Rotate to heading var rotation = this.el.getAttribute('rotation'); if (rotation) { this.heading.set( data.fly ? THREE.Math.degToRad(rotation.x) : 0, THREE.Math.degToRad(rotation.y), 0 ); dVelocity.applyEuler(this.heading); } velocity.add(dVelocity); // TODO - Several issues here: // (1) Interferes w/ gravity. // (2) Interferes w/ jumping. // (3) Likely to interfere w/ relative position to moving platform. // if (velocity.length() > data.movementSpeed) { // velocity.setLength(data.movementSpeed); // } } this.el.setAttribute('velocity', velocity); } }; },{}],94:[function(require,module,exports){ var LoopMode = { once: THREE.LoopOnce, repeat: THREE.LoopRepeat, pingpong: THREE.LoopPingPong }; /** * animation-mixer * * Player for animation clips. Intended to be compatible with any model format that supports * skeletal or morph animations through THREE.AnimationMixer. * See: https://threejs.org/docs/?q=animation#Reference/Animation/AnimationMixer */ module.exports = { schema: { clip: {default: '*'}, duration: {default: 0}, crossFadeDuration: {default: 0}, loop: {default: 'repeat', oneOf: Object.keys(LoopMode)}, repetitions: {default: Infinity, min: 0} }, init: function () { /** @type {THREE.Mesh} */ this.model = null; /** @type {THREE.AnimationMixer} */ this.mixer = null; /** @type {Array} */ this.activeActions = []; var model = this.el.getObject3D('mesh'); if (model) { this.load(model); } else { this.el.addEventListener('model-loaded', function(e) { this.load(e.detail.model); }.bind(this)); } }, load: function (model) { var el = this.el; this.model = model; this.mixer = new THREE.AnimationMixer(model); this.mixer.addEventListener('loop', function (e) { el.emit('animation-loop', {action: e.action, loopDelta: e.loopDelta}); }.bind(this)); this.mixer.addEventListener('finished', function (e) { el.emit('animation-finished', {action: e.action, direction: e.direction}); }.bind(this)); if (this.data.clip) this.update({}); }, remove: function () { if (this.mixer) this.mixer.stopAllAction(); }, update: function (previousData) { if (!previousData) return; this.stopAction(); if (this.data.clip) { this.playAction(); } }, stopAction: function () { var data = this.data; for (var i = 0; i < this.activeActions.length; i++) { data.crossFadeDuration ? this.activeActions[i].fadeOut(data.crossFadeDuration) : this.activeActions[i].stop(); } this.activeActions.length = 0; }, playAction: function () { if (!this.mixer) return; var model = this.model, data = this.data, clips = model.animations || (model.geometry || {}).animations || []; if (!clips.length) return; var re = wildcardToRegExp(data.clip); for (var clip, i = 0; (clip = clips[i]); i++) { if (clip.name.match(re)) { var action = this.mixer.clipAction(clip, model); action.enabled = true; if (data.duration) action.setDuration(data.duration); action .setLoop(LoopMode[data.loop], data.repetitions) .fadeIn(data.crossFadeDuration) .play(); this.activeActions.push(action); } } }, tick: function (t, dt) { if (this.mixer && !isNaN(dt)) this.mixer.update(dt / 1000); } }; /** * Creates a RegExp from the given string, converting asterisks to .* expressions, * and escaping all other characters. */ function wildcardToRegExp (s) { return new RegExp('^' + s.split(/\*+/).map(regExpEscape).join('.*') + '$'); } /** * RegExp-escapes all characters in the given string. */ function regExpEscape (s) { return s.replace(/[|\\{}()[\]^$+*?.]/g, '\\$&'); } },{}],95:[function(require,module,exports){ THREE.FBXLoader = require('../../lib/FBXLoader'); /** * fbx-model * * Loader for FBX format. Supports ASCII, but *not* binary, models. */ module.exports = { schema: { src: { type: 'asset' }, crossorigin: { default: '' } }, init: function () { this.model = null; }, update: function () { var loader, data = this.data; if (!data.src) return; this.remove(); loader = new THREE.FBXLoader(); if (data.crossorigin) loader.setCrossOrigin(data.crossorigin); loader.load(data.src, this.load.bind(this)); }, load: function (model) { this.model = model; this.el.setObject3D('mesh', model); this.el.emit('model-loaded', {format: 'fbx', model: model}); }, remove: function () { if (this.model) this.el.removeObject3D('mesh'); } }; },{"../../lib/FBXLoader":3}],96:[function(require,module,exports){ var fetchScript = require('../../lib/fetch-script')(); var LOADER_SRC = 'https://rawgit.com/mrdoob/three.js/r86/examples/js/loaders/GLTFLoader.js'; /** * Legacy loader for glTF 1.0 models. * Asynchronously loads THREE.GLTFLoader from rawgit. */ module.exports = { schema: {type: 'model'}, init: function () { this.model = null; this.loader = null; this.loaderPromise = loadLoader().then(function () { this.loader = new THREE.GLTFLoader(); this.loader.setCrossOrigin('Anonymous'); }.bind(this)); }, update: function () { var self = this; var el = this.el; var src = this.data; if (!src) { return; } this.remove(); this.loaderPromise.then(function () { this.loader.load(src, function gltfLoaded (gltfModel) { self.model = gltfModel.scene; self.model.animations = gltfModel.animations; el.setObject3D('mesh', self.model); el.emit('model-loaded', {format: 'gltf', model: self.model}); }); }.bind(this)); }, remove: function () { if (!this.model) { return; } this.el.removeObject3D('mesh'); } }; var loadLoader = (function () { var promise; return function () { promise = promise || fetchScript(LOADER_SRC); return promise; }; }()); },{"../../lib/fetch-script":8}],97:[function(require,module,exports){ module.exports = { 'animation-mixer': require('./animation-mixer'), 'fbx-model': require('./fbx-model'), 'gltf-model-legacy': require('./gltf-model-legacy'), 'json-model': require('./json-model'), 'object-model': require('./object-model'), 'ply-model': require('./ply-model'), registerAll: function (AFRAME) { if (this._registered) return; AFRAME = AFRAME || window.AFRAME; // THREE.AnimationMixer if (!AFRAME.components['animation-mixer']) { AFRAME.registerComponent('animation-mixer', this['animation-mixer']); } // THREE.PlyLoader if (!AFRAME.systems['ply-model']) { AFRAME.registerSystem('ply-model', this['ply-model'].System); } if (!AFRAME.components['ply-model']) { AFRAME.registerComponent('ply-model', this['ply-model'].Component); } // THREE.FBXLoader if (!AFRAME.components['fbx-model']) { AFRAME.registerComponent('fbx-model', this['fbx-model']); } // THREE.GLTFLoader if (!AFRAME.components['gltf-model-legacy']) { AFRAME.registerComponent('gltf-model-legacy', this['gltf-model-legacy']); } // THREE.JsonLoader if (!AFRAME.components['json-model']) { AFRAME.registerComponent('json-model', this['json-model']); } // THREE.ObjectLoader if (!AFRAME.components['object-model']) { AFRAME.registerComponent('object-model', this['object-model']); } this._registered = true; } }; },{"./animation-mixer":94,"./fbx-model":95,"./gltf-model-legacy":96,"./json-model":98,"./object-model":99,"./ply-model":100}],98:[function(require,module,exports){ /** * json-model * * Loader for THREE.js JSON format. Somewhat confusingly, there are two different THREE.js formats, * both having the .json extension. This loader supports only THREE.JsonLoader, which typically * includes only a single mesh. * * Check the console for errors, if in doubt. You may need to use `object-model` or * `blend-character-model` for some .js and .json files. * * See: https://clara.io/learn/user-guide/data_exchange/threejs_export */ module.exports = { schema: { src: { type: 'asset' }, crossorigin: { default: '' } }, init: function () { this.model = null; }, update: function () { var loader, data = this.data; if (!data.src) return; this.remove(); loader = new THREE.JSONLoader(); if (data.crossorigin) loader.crossOrigin = data.crossorigin; loader.load(data.src, function (geometry, materials) { // Attempt to automatically detect common material options. materials.forEach(function (mat) { mat.vertexColors = (geometry.faces[0] || {}).color ? THREE.FaceColors : THREE.NoColors; mat.skinning = !!(geometry.bones || []).length; mat.morphTargets = !!(geometry.morphTargets || []).length; mat.morphNormals = !!(geometry.morphNormals || []).length; }); var model = (geometry.bones || []).length ? new THREE.SkinnedMesh(geometry, new THREE.MultiMaterial(materials)) : new THREE.Mesh(geometry, new THREE.MultiMaterial(materials)); this.load(model); }.bind(this)); }, load: function (model) { this.model = model; this.el.setObject3D('mesh', model); this.el.emit('model-loaded', {format: 'json', model: model}); }, remove: function () { if (this.model) this.el.removeObject3D('mesh'); } }; },{}],99:[function(require,module,exports){ /** * object-model * * Loader for THREE.js JSON format. Somewhat confusingly, there are two different THREE.js formats, * both having the .json extension. This loader supports only THREE.ObjectLoader, which typically * includes multiple meshes or an entire scene. * * Check the console for errors, if in doubt. You may need to use `json-model` or * `blend-character-model` for some .js and .json files. * * See: https://clara.io/learn/user-guide/data_exchange/threejs_export */ module.exports = { schema: { src: { type: 'asset' }, crossorigin: { default: '' } }, init: function () { this.model = null; }, update: function () { var loader, data = this.data; if (!data.src) return; this.remove(); loader = new THREE.ObjectLoader(); if (data.crossorigin) loader.setCrossOrigin(data.crossorigin); loader.load(data.src, function(object) { // Enable skinning, if applicable. object.traverse(function(o) { if (o instanceof THREE.SkinnedMesh && o.material) { o.material.skinning = !!((o.geometry && o.geometry.bones) || []).length; } }); this.load(object); }.bind(this)); }, load: function (model) { this.model = model; this.el.setObject3D('mesh', model); this.el.emit('model-loaded', {format: 'json', model: model}); }, remove: function () { if (this.model) this.el.removeObject3D('mesh'); } }; },{}],100:[function(require,module,exports){ /** * ply-model * * Wraps THREE.PLYLoader. */ THREE.PLYLoader = require('../../lib/PLYLoader'); /** * Loads, caches, resolves geometries. * * @member cache - Promises that resolve geometries keyed by `src`. */ module.exports.System = { init: function () { this.cache = {}; }, /** * @returns {Promise} */ getOrLoadGeometry: function (src, skipCache) { var cache = this.cache; var cacheItem = cache[src]; if (!skipCache && cacheItem) { return cacheItem; } cache[src] = new Promise(function (resolve) { var loader = new THREE.PLYLoader(); loader.load(src, function (geometry) { resolve(geometry); }); }); return cache[src]; }, }; module.exports.Component = { schema: { skipCache: {type: 'boolean', default: false}, src: {type: 'asset'} }, init: function () { this.model = null; }, update: function () { var data = this.data; var el = this.el; var loader; if (!data.src) { console.warn('[%s] `src` property is required.', this.name); return; } // Get geometry from system, create and set mesh. this.system.getOrLoadGeometry(data.src, data.skipCache).then(function (geometry) { var model = createModel(geometry); el.setObject3D('mesh', model); el.emit('model-loaded', {format: 'ply', model: model}); }); }, remove: function () { if (this.model) { this.el.removeObject3D('mesh'); } } }; function createModel (geometry) { return new THREE.Mesh(geometry, new THREE.MeshPhongMaterial({ color: 0xFFFFFF, shading: THREE.FlatShading, vertexColors: THREE.VertexColors, shininess: 0 })); } },{"../../lib/PLYLoader":6}],101:[function(require,module,exports){ module.exports = { schema: { offset: {default: {x: 0, y: 0, z: 0}, type: 'vec3'} }, init: function () { this.active = false; this.targetEl = null; this.fire = this.fire.bind(this); this.offset = new THREE.Vector3(); }, update: function () { this.offset.copy(this.data.offset); }, play: function () { this.el.addEventListener('click', this.fire); }, pause: function () { this.el.removeEventListener('click', this.fire); }, remove: function () { this.pause(); }, fire: function () { var targetEl = this.el.sceneEl.querySelector('[checkpoint-controls]'); if (!targetEl) { throw new Error('No `checkpoint-controls` component found.'); } targetEl.components['checkpoint-controls'].setCheckpoint(this.el); }, getOffset: function () { return this.offset.copy(this.data.offset); } }; },{}],102:[function(require,module,exports){ /** * Specifies an envMap on an entity, without replacing any existing material * properties. */ module.exports = { schema: { path: {default: ''}, extension: {default: 'jpg'}, format: {default: 'RGBFormat'}, enableBackground: {default: false} }, init: function () { var data = this.data; this.texture = new THREE.CubeTextureLoader().load([ data.path + 'posx.' + data.extension, data.path + 'negx.' + data.extension, data.path + 'posy.' + data.extension, data.path + 'negy.' + data.extension, data.path + 'posz.' + data.extension, data.path + 'negz.' + data.extension ]); this.texture.format = THREE[data.format]; if (data.enableBackground) { this.el.sceneEl.object3D.background = this.texture; } this.applyEnvMap(); this.el.addEventListener('object3dset', this.applyEnvMap.bind(this)); }, applyEnvMap: function () { var mesh = this.el.getObject3D('mesh'); var envMap = this.texture; if (!mesh) return; mesh.traverse(function (node) { if (node.material && 'envMap' in node.material) { node.material.envMap = envMap; node.material.needsUpdate = true; } }); } }; },{}],103:[function(require,module,exports){ /** * Based on aframe/examples/showcase/tracked-controls. * * Handles events coming from the hand-controls. * Determines if the entity is grabbed or released. * Updates its position to move along the controller. */ module.exports = { init: function () { this.GRABBED_STATE = 'grabbed'; this.grabbing = false; this.hitEl = /** @type {AFRAME.Element} */ null; this.physics = /** @type {AFRAME.System} */ this.el.sceneEl.systems.physics; this.constraint = /** @type {CANNON.Constraint} */ null; // Bind event handlers this.onHit = this.onHit.bind(this); this.onGripOpen = this.onGripOpen.bind(this); this.onGripClose = this.onGripClose.bind(this); }, play: function () { var el = this.el; el.addEventListener('hit', this.onHit); el.addEventListener('gripdown', this.onGripClose); el.addEventListener('gripup', this.onGripOpen); el.addEventListener('trackpaddown', this.onGripClose); el.addEventListener('trackpadup', this.onGripOpen); el.addEventListener('triggerdown', this.onGripClose); el.addEventListener('triggerup', this.onGripOpen); }, pause: function () { var el = this.el; el.removeEventListener('hit', this.onHit); el.removeEventListener('gripdown', this.onGripClose); el.removeEventListener('gripup', this.onGripOpen); el.removeEventListener('trackpaddown', this.onGripClose); el.removeEventListener('trackpadup', this.onGripOpen); el.removeEventListener('triggerdown', this.onGripClose); el.removeEventListener('triggerup', this.onGripOpen); }, onGripClose: function (evt) { this.grabbing = true; }, onGripOpen: function (evt) { var hitEl = this.hitEl; this.grabbing = false; if (!hitEl) { return; } hitEl.removeState(this.GRABBED_STATE); this.hitEl = undefined; this.physics.world.removeConstraint(this.constraint); this.constraint = null; }, onHit: function (evt) { var hitEl = evt.detail.el; // If the element is already grabbed (it could be grabbed by another controller). // If the hand is not grabbing the element does not stick. // If we're already grabbing something you can't grab again. if (!hitEl || hitEl.is(this.GRABBED_STATE) || !this.grabbing || this.hitEl) { return; } hitEl.addState(this.GRABBED_STATE); this.hitEl = hitEl; this.constraint = new CANNON.LockConstraint(this.el.body, hitEl.body); this.physics.world.addConstraint(this.constraint); } }; },{}],104:[function(require,module,exports){ var physics = require('aframe-physics-system'); module.exports = { 'checkpoint': require('./checkpoint'), 'cube-env-map': require('./cube-env-map'), 'grab': require('./grab'), 'jump-ability': require('./jump-ability'), 'kinematic-body': require('./kinematic-body'), 'mesh-smooth': require('./mesh-smooth'), 'sphere-collider': require('./sphere-collider'), 'toggle-velocity': require('./toggle-velocity'), registerAll: function (AFRAME) { if (this._registered) return; AFRAME = AFRAME || window.AFRAME; physics.registerAll(); if (!AFRAME.components['checkpoint']) AFRAME.registerComponent('checkpoint', this['checkpoint']); if (!AFRAME.components['cube-env-map']) AFRAME.registerComponent('cube-env-map', this['cube-env-map']); if (!AFRAME.components['grab']) AFRAME.registerComponent('grab', this['grab']); if (!AFRAME.components['jump-ability']) AFRAME.registerComponent('jump-ability', this['jump-ability']); if (!AFRAME.components['kinematic-body']) AFRAME.registerComponent('kinematic-body', this['kinematic-body']); if (!AFRAME.components['mesh-smooth']) AFRAME.registerComponent('mesh-smooth', this['mesh-smooth']); if (!AFRAME.components['sphere-collider']) AFRAME.registerComponent('sphere-collider', this['sphere-collider']); if (!AFRAME.components['toggle-velocity']) AFRAME.registerComponent('toggle-velocity', this['toggle-velocity']); this._registered = true; } }; },{"./checkpoint":101,"./cube-env-map":102,"./grab":103,"./jump-ability":105,"./kinematic-body":106,"./mesh-smooth":107,"./sphere-collider":108,"./toggle-velocity":109,"aframe-physics-system":11}],105:[function(require,module,exports){ var ACCEL_G = -9.8, // m/s^2 EASING = -15; // m/s^2 /** * Jump ability. */ module.exports = { dependencies: ['velocity'], /* Schema ——————————————————————————————————————————————*/ schema: { on: { default: 'keydown:Space gamepadbuttondown:0' }, playerHeight: { default: 1.764 }, maxJumps: { default: 1 }, distance: { default: 5 }, soundJump: { default: '' }, soundLand: { default: '' }, debug: { default: false } }, init: function () { this.velocity = 0; this.numJumps = 0; var beginJump = this.beginJump.bind(this), events = this.data.on.split(' '); this.bindings = {}; for (var i = 0; i < events.length; i++) { this.bindings[events[i]] = beginJump; this.el.addEventListener(events[i], beginJump); } this.bindings.collide = this.onCollide.bind(this); this.el.addEventListener('collide', this.bindings.collide); }, remove: function () { for (var event in this.bindings) { if (this.bindings.hasOwnProperty(event)) { this.el.removeEventListener(event, this.bindings[event]); delete this.bindings[event]; } } this.el.removeEventListener('collide', this.bindings.collide); delete this.bindings.collide; }, beginJump: function () { if (this.numJumps < this.data.maxJumps) { var data = this.data, initialVelocity = Math.sqrt(-2 * data.distance * (ACCEL_G + EASING)), v = this.el.getAttribute('velocity'); this.el.setAttribute('velocity', {x: v.x, y: initialVelocity, z: v.z}); this.numJumps++; } }, onCollide: function () { this.numJumps = 0; } }; },{}],106:[function(require,module,exports){ /** * Kinematic body. * * Managed dynamic body, which moves but is not affected (directly) by the * physics engine. This is not a true kinematic body, in the sense that we are * letting the physics engine _compute_ collisions against it and selectively * applying those collisions to the object. The physics engine does not decide * the position/velocity/rotation of the element. * * Used for the camera object, because full physics simulation would create * movement that feels unnatural to the player. Bipedal movement does not * translate nicely to rigid body physics. * * See: http://www.learn-cocos2d.com/2013/08/physics-engine-platformer-terrible-idea/ * And: http://oxleygamedev.blogspot.com/2011/04/player-physics-part-2.html */ var CANNON = window.CANNON; var EPS = 0.000001; module.exports = { dependencies: ['velocity'], /******************************************************************* * Schema */ schema: { mass: { default: 5 }, radius: { default: 1.3 }, height: { default: 1.764 }, linearDamping: { default: 0.05 }, enableSlopes: { default: true } }, /******************************************************************* * Lifecycle */ init: function () { this.system = this.el.sceneEl.systems.physics; this.system.addBehavior(this, this.system.Phase.SIMULATE); var el = this.el, data = this.data, position = (new CANNON.Vec3()).copy(el.getAttribute('position')); this.body = new CANNON.Body({ material: this.system.material, position: position, mass: data.mass, linearDamping: data.linearDamping, fixedRotation: true }); this.body.addShape( new CANNON.Sphere(data.radius), new CANNON.Vec3(0, data.radius - data.height, 0) ); this.body.el = this.el; this.el.body = this.body; this.system.addBody(this.body); }, remove: function () { this.system.removeBody(this.body); this.system.removeBehavior(this, this.system.Phase.SIMULATE); delete this.el.body; }, /******************************************************************* * Tick */ /** * Checks CANNON.World for collisions and attempts to apply them to the * element automatically, in a player-friendly way. * * There's extra logic for horizontal surfaces here. The basic requirements: * (1) Only apply gravity when not in contact with _any_ horizontal surface. * (2) When moving, project the velocity against exactly one ground surface. * If in contact with two ground surfaces (e.g. ground + ramp), choose * the one that collides with current velocity, if any. */ step: (function () { var velocity = new THREE.Vector3(), normalizedVelocity = new THREE.Vector3(), currentSurfaceNormal = new THREE.Vector3(), groundNormal = new THREE.Vector3(); return function (t, dt) { if (!dt) return; var body = this.body, data = this.data, didCollide = false, height, groundHeight = -Infinity, groundBody; dt = Math.min(dt, this.system.data.maxInterval * 1000); groundNormal.set(0, 0, 0); velocity.copy(this.el.getAttribute('velocity')); body.velocity.copy(velocity); body.position.copy(this.el.getAttribute('position')); for (var i = 0, contact; (contact = this.system.world.contacts[i]); i++) { // 1. Find any collisions involving this element. Get the contact // normal, and make sure it's oriented _out_ of the other object and // enabled (body.collisionReponse is true for both bodies) if (!contact.enabled) { continue; } if (body.id === contact.bi.id) { contact.ni.negate(currentSurfaceNormal); } else if (body.id === contact.bj.id) { currentSurfaceNormal.copy(contact.ni); } else { continue; } didCollide = body.velocity.dot(currentSurfaceNormal) < -EPS; if (didCollide && currentSurfaceNormal.y <= 0.5) { // 2. If current trajectory attempts to move _through_ another // object, project the velocity against the collision plane to // prevent passing through. velocity = velocity.projectOnPlane(currentSurfaceNormal); } else if (currentSurfaceNormal.y > 0.5) { // 3. If in contact with something roughly horizontal (+/- 45º) then // consider that the current ground. Only the highest qualifying // ground is retained. height = body.id === contact.bi.id ? Math.abs(contact.rj.y + contact.bj.position.y) : Math.abs(contact.ri.y + contact.bi.position.y); if (height > groundHeight) { groundHeight = height; groundNormal.copy(currentSurfaceNormal); groundBody = body.id === contact.bi.id ? contact.bj : contact.bi; } } } normalizedVelocity.copy(velocity).normalize(); if (groundBody && normalizedVelocity.y < 0.5) { if (!data.enableSlopes) { groundNormal.set(0, 1, 0); } else if (groundNormal.y < 1 - EPS) { groundNormal.copy(this.raycastToGround(groundBody, groundNormal)); } // 4. Project trajectory onto the top-most ground object, unless // trajectory is > 45º. velocity = velocity.projectOnPlane(groundNormal); } else { // 5. If not in contact with anything horizontal, apply world gravity. // TODO - Why is the 4x scalar necessary. velocity.add(this.system.world.gravity.scale(dt * 4.0 / 1000)); } // 6. If the ground surface has a velocity, apply it directly to current // position, not velocity, to preserve relative velocity. if (groundBody && groundBody.el && groundBody.el.components.velocity) { var groundVelocity = groundBody.el.getAttribute('velocity'); body.position.copy({ x: body.position.x + groundVelocity.x * dt / 1000, y: body.position.y + groundVelocity.y * dt / 1000, z: body.position.z + groundVelocity.z * dt / 1000 }); this.el.setAttribute('position', body.position); } body.velocity.copy(velocity); this.el.setAttribute('velocity', velocity); }; }()), /** * When walking on complex surfaces (trimeshes, borders between two shapes), * the collision normals returned for the player sphere can be very * inconsistent. To address this, raycast straight down, find the collision * normal, and return whichever normal is more vertical. * @param {CANNON.Body} groundBody * @param {CANNON.Vec3} groundNormal * @return {CANNON.Vec3} */ raycastToGround: function (groundBody, groundNormal) { var ray, hitNormal, vFrom = this.body.position, vTo = this.body.position.clone(); vTo.y -= this.data.height; ray = new CANNON.Ray(vFrom, vTo); ray._updateDirection(); // TODO - Report bug. ray.intersectBody(groundBody); if (!ray.hasHit) return groundNormal; // Compare ABS, in case we're projecting against the inside of the face. hitNormal = ray.result.hitNormalWorld; return Math.abs(hitNormal.y) > Math.abs(groundNormal.y) ? hitNormal : groundNormal; } }; },{}],107:[function(require,module,exports){ /** * Apply this component to models that looks "blocky", to have Three.js compute * vertex normals on the fly for a "smoother" look. */ module.exports = { init: function () { this.el.addEventListener('model-loaded', function (e) { e.detail.model.traverse(function (node) { if (node.isMesh) node.geometry.computeVertexNormals(); }); }) } } },{}],108:[function(require,module,exports){ /** * Based on aframe/examples/showcase/tracked-controls. * * Implement bounding sphere collision detection for entities with a mesh. * Sets the specified state on the intersected entities. * * @property {string} objects - Selector of the entities to test for collision. * @property {string} state - State to set on collided entities. * */ module.exports = { schema: { objects: {default: ''}, state: {default: 'collided'}, radius: {default: 0.05}, watch: {default: true} }, init: function () { /** @type {MutationObserver} */ this.observer = null; /** @type {Array} Elements to watch for collisions. */ this.els = []; /** @type {Array} Elements currently in collision state. */ this.collisions = []; this.handleHit = this.handleHit.bind(this); this.handleHitEnd = this.handleHitEnd.bind(this); }, remove: function () { this.pause(); }, play: function () { var sceneEl = this.el.sceneEl; if (this.data.watch) { this.observer = new MutationObserver(this.update.bind(this, null)); this.observer.observe(sceneEl, {childList: true, subtree: true}); } }, pause: function () { if (this.observer) { this.observer.disconnect(); this.observer = null; } }, /** * Update list of entities to test for collision. */ update: function () { var data = this.data; var objectEls; // Push entities into list of els to intersect. if (data.objects) { objectEls = this.el.sceneEl.querySelectorAll(data.objects); } else { // If objects not defined, intersect with everything. objectEls = this.el.sceneEl.children; } // Convert from NodeList to Array this.els = Array.prototype.slice.call(objectEls); }, tick: (function () { var position = new THREE.Vector3(), meshPosition = new THREE.Vector3(), meshScale = new THREE.Vector3(), colliderScale = new THREE.Vector3(), distanceMap = new Map(); return function () { var el = this.el, data = this.data, mesh = el.getObject3D('mesh'), colliderRadius, collisions = []; if (!mesh) { return; } distanceMap.clear(); position.copy(el.object3D.getWorldPosition()); el.object3D.getWorldScale(colliderScale); colliderRadius = data.radius * scaleFactor(colliderScale); // Update collision list. this.els.forEach(intersect); // Emit events and add collision states, in order of distance. collisions .sort(function (a, b) { return distanceMap.get(a) > distanceMap.get(b) ? 1 : -1; }) .forEach(this.handleHit); // Remove collision state from current element. if (collisions.length === 0) { el.emit('hit', {el: null}); } // Remove collision state from other elements. this.collisions.filter(function (el) { return !distanceMap.has(el); }).forEach(this.handleHitEnd); // Store new collisions this.collisions = collisions; // Bounding sphere collision detection function intersect (el) { var radius, mesh, distance, box, extent, size; if (!el.isEntity) { return; } mesh = el.getObject3D('mesh'); if (!mesh) { return; } box = new THREE.Box3().setFromObject(mesh); size = box.getSize(); extent = Math.max(size.x, size.y, size.z) / 2; radius = Math.sqrt(2 * extent * extent); box.getCenter(meshPosition); if (!radius) { return; } distance = position.distanceTo(meshPosition); if (distance < radius + colliderRadius) { collisions.push(el); distanceMap.set(el, distance); } } // use max of scale factors to maintain bounding sphere collision function scaleFactor (scaleVec) { return Math.max.apply(null, scaleVec.toArray()); } }; })(), handleHit: function (targetEl) { targetEl.emit('hit'); targetEl.addState(this.data.state); this.el.emit('hit', {el: targetEl}); }, handleHitEnd: function (targetEl) { targetEl.emit('hitend'); targetEl.removeState(this.data.state); this.el.emit('hitend', {el: targetEl}); } }; },{}],109:[function(require,module,exports){ /** * Toggle velocity. * * Moves an object back and forth along an axis, within a min/max extent. */ module.exports = { dependencies: ['velocity'], schema: { axis: { default: 'x', oneOf: ['x', 'y', 'z'] }, min: { default: 0 }, max: { default: 0 }, speed: { default: 1 } }, init: function () { var velocity = {x: 0, y: 0, z: 0}; velocity[this.data.axis] = this.data.speed; this.el.setAttribute('velocity', velocity); if (this.el.sceneEl.addBehavior) this.el.sceneEl.addBehavior(this); }, remove: function () {}, update: function () { this.tick(); }, tick: function () { var data = this.data, velocity = this.el.getAttribute('velocity'), position = this.el.getAttribute('position'); if (velocity[data.axis] > 0 && position[data.axis] > data.max) { velocity[data.axis] = -data.speed; this.el.setAttribute('velocity', velocity); } else if (velocity[data.axis] < 0 && position[data.axis] < data.min) { velocity[data.axis] = data.speed; this.el.setAttribute('velocity', velocity); } }, }; },{}],110:[function(require,module,exports){ module.exports = { 'nav-mesh': require('./nav-mesh'), 'nav-controller': require('./nav-controller'), 'system': require('./system'), registerAll: function (AFRAME) { if (this._registered) return; AFRAME = AFRAME || window.AFRAME; if (!AFRAME.components['nav-mesh']) { AFRAME.registerComponent('nav-mesh', this['nav-mesh']); } if (!AFRAME.components['nav-controller']) { AFRAME.registerComponent('nav-controller', this['nav-controller']); } if (!AFRAME.systems.nav) { AFRAME.registerSystem('nav', this.system); } this._registered = true; } }; },{"./nav-controller":111,"./nav-mesh":112,"./system":113}],111:[function(require,module,exports){ module.exports = { schema: { destination: {type: 'vec3'}, active: {default: false}, speed: {default: 2} }, init: function () { this.system = this.el.sceneEl.systems.nav; this.system.addController(this); this.path = []; this.raycaster = new THREE.Raycaster(); }, remove: function () { this.system.removeController(this); }, update: function () { this.path.length = 0; }, tick: (function () { var vDest = new THREE.Vector3(); var vDelta = new THREE.Vector3(); var vNext = new THREE.Vector3(); return function (t, dt) { var el = this.el; var data = this.data; var raycaster = this.raycaster; var speed = data.speed * dt / 1000; if (!data.active) return; // Use PatrolJS pathfinding system to get shortest path to target. if (!this.path.length) { this.path = this.system.getPath(this.el.object3D, vDest.copy(data.destination)); this.path = this.path || []; el.emit('nav-start'); } // If no path is found, exit. if (!this.path.length) { console.warn('[nav] Unable to find path to %o.', data.destination); this.el.setAttribute('nav-controller', {active: false}); el.emit('nav-end'); return; } // Current segment is a vector from current position to next waypoint. var vCurrent = el.object3D.position; var vWaypoint = this.path[0]; vDelta.subVectors(vWaypoint, vCurrent); var distance = vDelta.length(); var gazeTarget; if (distance < speed) { // If <1 step from current waypoint, discard it and move toward next. this.path.shift(); // After discarding the last waypoint, exit pathfinding. if (!this.path.length) { this.el.setAttribute('nav-controller', {active: false}); el.emit('nav-end'); return; } else { gazeTarget = this.path[0]; } } else { // If still far away from next waypoint, find next position for // the current frame. vNext.copy(vDelta.setLength(speed)).add(vCurrent); gazeTarget = vWaypoint; } // Look at the next waypoint. gazeTarget.y = vCurrent.y; el.object3D.lookAt(gazeTarget); // Raycast against the nav mesh, to keep the controller moving along the // ground, not traveling in a straight line from higher to lower waypoints. raycaster.ray.origin.copy(vNext); raycaster.ray.origin.y += 1.5; raycaster.ray.direction.y = -1; var intersections = raycaster.intersectObject(this.system.getNavMesh()); if (!intersections.length) { // Raycasting failed. Step toward the waypoint and hope for the best. vCurrent.copy(vNext); } else { // Re-project next position onto nav mesh. vDelta.subVectors(intersections[0].point, vCurrent); vCurrent.add(vDelta.setLength(speed)); } }; }()) }; },{}],112:[function(require,module,exports){ /** * nav-mesh * * Waits for a mesh to be loaded on the current entity, then sets it as the * nav mesh in the pathfinding system. */ module.exports = { init: function () { this.system = this.el.sceneEl.systems.nav; this.loadNavMesh(); this.el.addEventListener('model-loaded', this.loadNavMesh.bind(this)); }, loadNavMesh: function () { var object = this.el.getObject3D('mesh'); if (!object) return; var navMesh; object.traverse(function (node) { if (node.isMesh) navMesh = node; }); if (!navMesh) return; this.system.setNavMesh(navMesh); } }; },{}],113:[function(require,module,exports){ var Path = require('three-pathfinding'); /** * nav * * Pathfinding system, using PatrolJS. */ module.exports = { init: function () { this.navMesh = null; this.nodes = null; this.controllers = new Set(); }, /** * @param {THREE.Mesh} mesh */ setNavMesh: function (mesh) { var geometry = mesh.geometry.isBufferGeometry ? new THREE.Geometry().fromBufferGeometry(mesh.geometry) : mesh.geometry; this.navMesh = new THREE.Mesh(geometry); this.nodes = Path.buildNodes(this.navMesh.geometry); Path.setZoneData('level', this.nodes); }, /** * @return {THREE.Mesh} */ getNavMesh: function () { return this.navMesh; }, /** * @param {NavController} ctrl */ addController: function (ctrl) { this.controllers.add(ctrl); }, /** * @param {NavController} ctrl */ removeController: function (ctrl) { this.controllers.remove(ctrl); }, /** * @param {NavController} ctrl * @param {THREE.Vector3} target * @return {Array} */ getPath: function (ctrl, target) { var start = ctrl.el.object3D.position; // TODO(donmccurdy): Current group should be cached. var group = Path.getGroup('level', start); return Path.findPath(start, target, 'level', group); } }; },{"three-pathfinding":82}],114:[function(require,module,exports){ /** * Flat grid. * * Defaults to 75x75. */ var Primitive = module.exports = { defaultComponents: { geometry: { primitive: 'plane', width: 75, height: 75 }, rotation: {x: -90, y: 0, z: 0}, material: { src: 'url(https://cdn.rawgit.com/donmccurdy/aframe-extras/v1.16.3/assets/grid.png)', repeat: '75 75' } }, mappings: { width: 'geometry.width', height: 'geometry.height', src: 'material.src' } }; module.exports.registerAll = (function () { var registered = false; return function (AFRAME) { if (registered) return; AFRAME = AFRAME || window.AFRAME; AFRAME.registerPrimitive('a-grid', Primitive); registered = true; }; }()); },{}],115:[function(require,module,exports){ var vg = require('../../lib/hex-grid.min.js'); var defaultHexGrid = require('../../lib/default-hex-grid.json'); /** * Hex grid. */ var Primitive = module.exports.Primitive = { defaultComponents: { 'hexgrid': {} }, mappings: { src: 'hexgrid.src' } }; var Component = module.exports.Component = { dependencies: ['material'], schema: { src: {type: 'asset'} }, init: function () { var data = this.data; if (data.src) { fetch(data.src) .then(function (response) { response.json(); }) .then(function (json) { this.addMesh(json); }); } else { this.addMesh(defaultHexGrid); } }, addMesh: function (json) { var grid = new vg.HexGrid(); grid.fromJSON(json); var board = new vg.Board(grid); board.generateTilemap(); this.el.setObject3D('mesh', board.group); this.addMaterial(); }, addMaterial: function () { var materialComponent = this.el.components.material; var material = (materialComponent || {}).material; if (!material) return; this.el.object3D.traverse(function (node) { if (node.isMesh) { node.material = material; } }); }, remove: function () { this.el.removeObject3D('mesh'); } }; module.exports.registerAll = (function () { var registered = false; return function (AFRAME) { if (registered) return; AFRAME = AFRAME || window.AFRAME; AFRAME.registerComponent('hexgrid', Component); AFRAME.registerPrimitive('a-hexgrid', Primitive); registered = true; }; }()); },{"../../lib/default-hex-grid.json":7,"../../lib/hex-grid.min.js":9}],116:[function(require,module,exports){ /** * Flat-shaded ocean primitive. * * Based on a Codrops tutorial: * http://tympanus.net/codrops/2016/04/26/the-aviator-animating-basic-3d-scene-threejs/ */ var Primitive = module.exports.Primitive = { defaultComponents: { ocean: {}, rotation: {x: -90, y: 0, z: 0} }, mappings: { width: 'ocean.width', depth: 'ocean.depth', density: 'ocean.density', color: 'ocean.color', opacity: 'ocean.opacity' } }; var Component = module.exports.Component = { schema: { // Dimensions of the ocean area. width: {default: 10, min: 0}, depth: {default: 10, min: 0}, // Density of waves. density: {default: 10}, // Wave amplitude and variance. amplitude: {default: 0.1}, amplitudeVariance: {default: 0.3}, // Wave speed and variance. speed: {default: 1}, speedVariance: {default: 2}, // Material. color: {default: '#7AD2F7', type: 'color'}, opacity: {default: 0.8} }, /** * Use play() instead of init(), because component mappings – unavailable as dependencies – are * not guaranteed to have parsed when this component is initialized. */ play: function () { var el = this.el, data = this.data, material = el.components.material; var geometry = new THREE.PlaneGeometry(data.width, data.depth, data.density, data.density); geometry.mergeVertices(); this.waves = []; for (var v, i = 0, l = geometry.vertices.length; i < l; i++) { v = geometry.vertices[i]; this.waves.push({ z: v.z, ang: Math.random() * Math.PI * 2, amp: data.amplitude + Math.random() * data.amplitudeVariance, speed: (data.speed + Math.random() * data.speedVariance) / 1000 // radians / frame }); } if (!material) { material = {}; material.material = new THREE.MeshPhongMaterial({ color: data.color, transparent: data.opacity < 1, opacity: data.opacity, shading: THREE.FlatShading, }); } this.mesh = new THREE.Mesh(geometry, material.material); el.setObject3D('mesh', this.mesh); }, remove: function () { this.el.removeObject3D('mesh'); }, tick: function (t, dt) { if (!dt) return; var verts = this.mesh.geometry.vertices; for (var v, vprops, i = 0; (v = verts[i]); i++){ vprops = this.waves[i]; v.z = vprops.z + Math.sin(vprops.ang) * vprops.amp; vprops.ang += vprops.speed * dt; } this.mesh.geometry.verticesNeedUpdate = true; } }; module.exports.registerAll = (function () { var registered = false; return function (AFRAME) { if (registered) return; AFRAME = AFRAME || window.AFRAME; AFRAME.registerComponent('ocean', Component); AFRAME.registerPrimitive('a-ocean', Primitive); registered = true; }; }()); },{}],117:[function(require,module,exports){ /** * Tube following a custom path. * * Usage: * * ```html * * ``` */ var Primitive = module.exports.Primitive = { defaultComponents: { tube: {}, }, mappings: { path: 'tube.path', segments: 'tube.segments', radius: 'tube.radius', radialSegments: 'tube.radialSegments', closed: 'tube.closed' } }; var Component = module.exports.Component = { schema: { path: {default: []}, segments: {default: 64}, radius: {default: 1}, radialSegments: {default: 8}, closed: {default: false} }, init: function () { var el = this.el, data = this.data, material = el.components.material; if (!data.path.length) { console.error('[a-tube] `path` property expected but not found.'); return; } var curve = new THREE.CatmullRomCurve3(data.path.map(function (point) { point = point.split(' '); return new THREE.Vector3(Number(point[0]), Number(point[1]), Number(point[2])); })); var geometry = new THREE.TubeGeometry( curve, data.segments, data.radius, data.radialSegments, data.closed ); if (!material) { material = {}; material.material = new THREE.MeshPhongMaterial(); } this.mesh = new THREE.Mesh(geometry, material.material); this.el.setObject3D('mesh', this.mesh); }, remove: function () { if (this.mesh) this.el.removeObject3D('mesh'); } }; module.exports.registerAll = (function () { var registered = false; return function (AFRAME) { if (registered) return; AFRAME = AFRAME || window.AFRAME; AFRAME.registerComponent('tube', Component); AFRAME.registerPrimitive('a-tube', Primitive); registered = true; }; }()); },{}],118:[function(require,module,exports){ module.exports = { 'a-grid': require('./a-grid'), 'a-hexgrid': require('./a-hexgrid'), 'a-ocean': require('./a-ocean'), 'a-tube': require('./a-tube'), registerAll: function (AFRAME) { if (this._registered) return; AFRAME = AFRAME || window.AFRAME; this['a-grid'].registerAll(AFRAME); this['a-hexgrid'].registerAll(AFRAME); this['a-ocean'].registerAll(AFRAME); this['a-tube'].registerAll(AFRAME); this._registered = true; } }; },{"./a-grid":114,"./a-hexgrid":115,"./a-ocean":116,"./a-tube":117}]},{},[1]);