;(function() { 'use strict' var root = this var has_require = typeof require !== 'undefined' var THREE = root.THREE || (has_require && require('three')) if (!THREE) throw new Error('MeshLine requires three.js') function MeshLine() { THREE.BufferGeometry.call(this) this.type = 'MeshLine' this.positions = [] this.previous = [] this.next = [] this.side = [] this.width = [] this.indices_array = [] this.uvs = [] this.counters = [] this._points = [] this._geom = null this.widthCallback = null // Used to raycast this.matrixWorld = new THREE.Matrix4() Object.defineProperties(this, { // this is now a bufferGeometry // add getter to support previous api geometry: { enumerable: true, get: function() { return this }, }, geom: { enumerable: true, get: function() { return this._geom }, set: function(value) { this.setGeometry(value, this.widthCallback) }, }, // for declaritive architectures // to return the same value that sets the points // eg. this.points = points // console.log(this.points) -> points points: { enumerable: true, get: function() { return this._points }, set: function(value) { this.setPoints(value, this.widthCallback) }, }, }) } MeshLine.prototype = Object.create(THREE.BufferGeometry.prototype) MeshLine.prototype.constructor = MeshLine MeshLine.prototype.isMeshLine = true MeshLine.prototype.setMatrixWorld = function(matrixWorld) { this.matrixWorld = matrixWorld } // setting via a geometry is rather superfluous // as you're creating a unecessary geometry just to throw away // but exists to support previous api MeshLine.prototype.setGeometry = function(g, c) { // as the input geometry are mutated we store them // for later retreival when necessary (declaritive architectures) this._geometry = g; if (g instanceof THREE.Geometry) { this.setPoints(g.vertices, c); } else if (g instanceof THREE.BufferGeometry) { this.setPoints(g.getAttribute("position").array, c); } else { this.setPoints(g, c); } } MeshLine.prototype.setPoints = function(points, wcb) { if (!(points instanceof Float32Array) && !(points instanceof Array)) { console.error( "ERROR: The BufferArray of points is not instancied correctly." ); return; } // as the points are mutated we store them // for later retreival when necessary (declaritive architectures) this._points = points; this.widthCallback = wcb; this.positions = []; this.counters = []; if (points.length && points[0] instanceof THREE.Vector3) { // could transform Vector3 array into the array used below // but this approach will only loop through the array once // and is more performant for (var j = 0; j < points.length; j++) { var p = points[j]; var c = j / points.length; this.positions.push(p.x, p.y, p.z); this.positions.push(p.x, p.y, p.z); this.counters.push(c); this.counters.push(c); } } else { for (var j = 0; j < points.length; j += 3) { var c = j / points.length; this.positions.push(points[j], points[j + 1], points[j + 2]); this.positions.push(points[j], points[j + 1], points[j + 2]); this.counters.push(c); this.counters.push(c); } } this.process(); } function MeshLineRaycast(raycaster, intersects) { var inverseMatrix = new THREE.Matrix4() var ray = new THREE.Ray() var sphere = new THREE.Sphere() var interRay = new THREE.Vector3() var geometry = this.geometry // Checking boundingSphere distance to ray sphere.copy(geometry.boundingSphere) sphere.applyMatrix4(this.matrixWorld) if (raycaster.ray.intersectSphere(sphere, interRay) === false) { return } inverseMatrix.getInverse(this.matrixWorld) ray.copy(raycaster.ray).applyMatrix4(inverseMatrix) var vStart = new THREE.Vector3() var vEnd = new THREE.Vector3() var interSegment = new THREE.Vector3() var step = this instanceof THREE.LineSegments ? 2 : 1 var index = geometry.index var attributes = geometry.attributes if (index !== null) { var indices = index.array var positions = attributes.position.array var widths = attributes.width.array for (var i = 0, l = indices.length - 1; i < l; i += step) { var a = indices[i] var b = indices[i + 1] vStart.fromArray(positions, a * 3) vEnd.fromArray(positions, b * 3) var width = widths[Math.floor(i / 3)] != undefined ? widths[Math.floor(i / 3)] : 1 var precision = raycaster.params.Line.threshold + (this.material.lineWidth * width) / 2 var precisionSq = precision * precision var distSq = ray.distanceSqToSegment(vStart, vEnd, interRay, interSegment) if (distSq > precisionSq) continue interRay.applyMatrix4(this.matrixWorld) //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo(interRay) if (distance < raycaster.near || distance > raycaster.far) continue intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this, }) // make event only fire once i = l } } } MeshLine.prototype.raycast = MeshLineRaycast MeshLine.prototype.compareV3 = function(a, b) { var aa = a * 6 var ab = b * 6 return ( this.positions[aa] === this.positions[ab] && this.positions[aa + 1] === this.positions[ab + 1] && this.positions[aa + 2] === this.positions[ab + 2] ) } MeshLine.prototype.copyV3 = function(a) { var aa = a * 6 return [this.positions[aa], this.positions[aa + 1], this.positions[aa + 2]] } MeshLine.prototype.process = function() { var l = this.positions.length / 6 this.previous = [] this.next = [] this.side = [] this.width = [] this.indices_array = [] this.uvs = [] var w var v // initial previous points if (this.compareV3(0, l - 1)) { v = this.copyV3(l - 2) } else { v = this.copyV3(0) } this.previous.push(v[0], v[1], v[2]) this.previous.push(v[0], v[1], v[2]) for (var j = 0; j < l; j++) { // sides this.side.push(1) this.side.push(-1) // widths if (this.widthCallback) w = this.widthCallback(j / (l - 1)) else w = 1 this.width.push(w) this.width.push(w) // uvs this.uvs.push(j / (l - 1), 0) this.uvs.push(j / (l - 1), 1) if (j < l - 1) { // points previous to poisitions v = this.copyV3(j) this.previous.push(v[0], v[1], v[2]) this.previous.push(v[0], v[1], v[2]) // indices var n = j * 2 this.indices_array.push(n, n + 1, n + 2) this.indices_array.push(n + 2, n + 1, n + 3) } if (j > 0) { // points after poisitions v = this.copyV3(j) this.next.push(v[0], v[1], v[2]) this.next.push(v[0], v[1], v[2]) } } // last next point if (this.compareV3(l - 1, 0)) { v = this.copyV3(1) } else { v = this.copyV3(l - 1) } this.next.push(v[0], v[1], v[2]) this.next.push(v[0], v[1], v[2]) // redefining the attribute seems to prevent range errors // if the user sets a differing number of vertices if (!this._attributes || this._attributes.position.count !== this.positions.length) { this._attributes = { position: new THREE.BufferAttribute(new Float32Array(this.positions), 3), previous: new THREE.BufferAttribute(new Float32Array(this.previous), 3), next: new THREE.BufferAttribute(new Float32Array(this.next), 3), side: new THREE.BufferAttribute(new Float32Array(this.side), 1), width: new THREE.BufferAttribute(new Float32Array(this.width), 1), uv: new THREE.BufferAttribute(new Float32Array(this.uvs), 2), index: new THREE.BufferAttribute(new Uint16Array(this.indices_array), 1), counters: new THREE.BufferAttribute(new Float32Array(this.counters), 1), } } else { this._attributes.position.copyArray(new Float32Array(this.positions)) this._attributes.position.needsUpdate = true this._attributes.previous.copyArray(new Float32Array(this.previous)) this._attributes.previous.needsUpdate = true this._attributes.next.copyArray(new Float32Array(this.next)) this._attributes.next.needsUpdate = true this._attributes.side.copyArray(new Float32Array(this.side)) this._attributes.side.needsUpdate = true this._attributes.width.copyArray(new Float32Array(this.width)) this._attributes.width.needsUpdate = true this._attributes.uv.copyArray(new Float32Array(this.uvs)) this._attributes.uv.needsUpdate = true this._attributes.index.copyArray(new Uint16Array(this.indices_array)) this._attributes.index.needsUpdate = true } this.setAttribute('position', this._attributes.position) this.setAttribute('previous', this._attributes.previous) this.setAttribute('next', this._attributes.next) this.setAttribute('side', this._attributes.side) this.setAttribute('width', this._attributes.width) this.setAttribute('uv', this._attributes.uv) this.setAttribute('counters', this._attributes.counters) this.setIndex(this._attributes.index) this.computeBoundingSphere() this.computeBoundingBox() } function memcpy(src, srcOffset, dst, dstOffset, length) { var i src = src.subarray || src.slice ? src : src.buffer dst = dst.subarray || dst.slice ? dst : dst.buffer src = srcOffset ? src.subarray ? src.subarray(srcOffset, length && srcOffset + length) : src.slice(srcOffset, length && srcOffset + length) : src if (dst.set) { dst.set(src, dstOffset) } else { for (i = 0; i < src.length; i++) { dst[i + dstOffset] = src[i] } } return dst } /** * Fast method to advance the line by one position. The oldest position is removed. * @param position */ MeshLine.prototype.advance = function(position) { var positions = this._attributes.position.array var previous = this._attributes.previous.array var next = this._attributes.next.array var l = positions.length // PREVIOUS memcpy(positions, 0, previous, 0, l) // POSITIONS memcpy(positions, 6, positions, 0, l - 6) positions[l - 6] = position.x positions[l - 5] = position.y positions[l - 4] = position.z positions[l - 3] = position.x positions[l - 2] = position.y positions[l - 1] = position.z // NEXT memcpy(positions, 6, next, 0, l - 6) next[l - 6] = position.x next[l - 5] = position.y next[l - 4] = position.z next[l - 3] = position.x next[l - 2] = position.y next[l - 1] = position.z this._attributes.position.needsUpdate = true this._attributes.previous.needsUpdate = true this._attributes.next.needsUpdate = true } THREE.ShaderChunk['meshline_vert'] = [ '', THREE.ShaderChunk.logdepthbuf_pars_vertex, THREE.ShaderChunk.fog_pars_vertex, '', 'attribute vec3 previous;', 'attribute vec3 next;', 'attribute float side;', 'attribute float width;', 'attribute float counters;', '', 'uniform vec2 resolution;', 'uniform float lineWidth;', 'uniform vec3 color;', 'uniform float opacity;', 'uniform float sizeAttenuation;', '', 'varying vec2 vUV;', 'varying vec4 vColor;', 'varying float vCounters;', '', 'vec2 fix( vec4 i, float aspect ) {', '', ' vec2 res = i.xy / i.w;', ' res.x *= aspect;', ' vCounters = counters;', ' return res;', '', '}', '', 'void main() {', '', ' float aspect = resolution.x / resolution.y;', '', ' vColor = vec4( color, opacity );', ' vUV = uv;', '', ' mat4 m = projectionMatrix * modelViewMatrix;', ' vec4 finalPosition = m * vec4( position, 1.0 );', ' vec4 prevPos = m * vec4( previous, 1.0 );', ' vec4 nextPos = m * vec4( next, 1.0 );', '', ' vec2 currentP = fix( finalPosition, aspect );', ' vec2 prevP = fix( prevPos, aspect );', ' vec2 nextP = fix( nextPos, aspect );', '', ' float w = lineWidth * width;', '', ' vec2 dir;', ' if( nextP == currentP ) dir = normalize( currentP - prevP );', ' else if( prevP == currentP ) dir = normalize( nextP - currentP );', ' else {', ' vec2 dir1 = normalize( currentP - prevP );', ' vec2 dir2 = normalize( nextP - currentP );', ' dir = normalize( dir1 + dir2 );', '', ' vec2 perp = vec2( -dir1.y, dir1.x );', ' vec2 miter = vec2( -dir.y, dir.x );', ' //w = clamp( w / dot( miter, perp ), 0., 4. * lineWidth * width );', '', ' }', '', ' //vec2 normal = ( cross( vec3( dir, 0. ), vec3( 0., 0., 1. ) ) ).xy;', ' vec4 normal = vec4( -dir.y, dir.x, 0., 1. );', ' normal.xy *= .5 * w;', ' normal *= projectionMatrix;', ' if( sizeAttenuation == 0. ) {', ' normal.xy *= finalPosition.w;', ' normal.xy /= ( vec4( resolution, 0., 1. ) * projectionMatrix ).xy;', ' }', '', ' finalPosition.xy += normal.xy * side;', '', ' gl_Position = finalPosition;', '', THREE.ShaderChunk.logdepthbuf_vertex, THREE.ShaderChunk.fog_vertex && ' vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );', THREE.ShaderChunk.fog_vertex, '}', ].join('\n') THREE.ShaderChunk['meshline_frag'] = [ '', THREE.ShaderChunk.fog_pars_fragment, THREE.ShaderChunk.logdepthbuf_pars_fragment, '', 'uniform sampler2D map;', 'uniform sampler2D alphaMap;', 'uniform float useMap;', 'uniform float useAlphaMap;', 'uniform float useDash;', 'uniform float dashArray;', 'uniform float dashOffset;', 'uniform float dashRatio;', 'uniform float visibility;', 'uniform float alphaTest;', 'uniform vec2 repeat;', '', 'varying vec2 vUV;', 'varying vec4 vColor;', 'varying float vCounters;', '', 'void main() {', '', THREE.ShaderChunk.logdepthbuf_fragment, '', ' vec4 c = vColor;', ' if( useMap == 1. ) c *= texture2D( map, vUV * repeat );', ' if( useAlphaMap == 1. ) c.a *= texture2D( alphaMap, vUV * repeat ).a;', ' if( c.a < alphaTest ) discard;', ' if( useDash == 1. ){', ' c.a *= ceil(mod(vCounters + dashOffset, dashArray) - (dashArray * dashRatio));', ' }', ' gl_FragColor = c;', ' gl_FragColor.a *= step(vCounters, visibility);', '', THREE.ShaderChunk.fog_fragment, '}', ].join('\n') function MeshLineMaterial(parameters) { THREE.ShaderMaterial.call(this, { uniforms: Object.assign({}, THREE.UniformsLib.fog, { lineWidth: { value: 1 }, map: { value: null }, useMap: { value: 0 }, alphaMap: { value: null }, useAlphaMap: { value: 0 }, color: { value: new THREE.Color(0xffffff) }, opacity: { value: 1 }, resolution: { value: new THREE.Vector2(1, 1) }, sizeAttenuation: { value: 1 }, dashArray: { value: 0 }, dashOffset: { value: 0 }, dashRatio: { value: 0.5 }, useDash: { value: 0 }, visibility: { value: 1 }, alphaTest: { value: 0 }, repeat: { value: new THREE.Vector2(1, 1) }, }), vertexShader: THREE.ShaderChunk.meshline_vert, fragmentShader: THREE.ShaderChunk.meshline_frag, }) this.type = 'MeshLineMaterial' Object.defineProperties(this, { lineWidth: { enumerable: true, get: function() { return this.uniforms.lineWidth.value }, set: function(value) { this.uniforms.lineWidth.value = value }, }, map: { enumerable: true, get: function() { return this.uniforms.map.value }, set: function(value) { this.uniforms.map.value = value }, }, useMap: { enumerable: true, get: function() { return this.uniforms.useMap.value }, set: function(value) { this.uniforms.useMap.value = value }, }, alphaMap: { enumerable: true, get: function() { return this.uniforms.alphaMap.value }, set: function(value) { this.uniforms.alphaMap.value = value }, }, useAlphaMap: { enumerable: true, get: function() { return this.uniforms.useAlphaMap.value }, set: function(value) { this.uniforms.useAlphaMap.value = value }, }, color: { enumerable: true, get: function() { return this.uniforms.color.value }, set: function(value) { this.uniforms.color.value = value }, }, opacity: { enumerable: true, get: function() { return this.uniforms.opacity.value }, set: function(value) { this.uniforms.opacity.value = value }, }, resolution: { enumerable: true, get: function() { return this.uniforms.resolution.value }, set: function(value) { this.uniforms.resolution.value.copy(value) }, }, sizeAttenuation: { enumerable: true, get: function() { return this.uniforms.sizeAttenuation.value }, set: function(value) { this.uniforms.sizeAttenuation.value = value }, }, dashArray: { enumerable: true, get: function() { return this.uniforms.dashArray.value }, set: function(value) { this.uniforms.dashArray.value = value this.useDash = value !== 0 ? 1 : 0 }, }, dashOffset: { enumerable: true, get: function() { return this.uniforms.dashOffset.value }, set: function(value) { this.uniforms.dashOffset.value = value }, }, dashRatio: { enumerable: true, get: function() { return this.uniforms.dashRatio.value }, set: function(value) { this.uniforms.dashRatio.value = value }, }, useDash: { enumerable: true, get: function() { return this.uniforms.useDash.value }, set: function(value) { this.uniforms.useDash.value = value }, }, visibility: { enumerable: true, get: function() { return this.uniforms.visibility.value }, set: function(value) { this.uniforms.visibility.value = value }, }, alphaTest: { enumerable: true, get: function() { return this.uniforms.alphaTest.value }, set: function(value) { this.uniforms.alphaTest.value = value }, }, repeat: { enumerable: true, get: function() { return this.uniforms.repeat.value }, set: function(value) { this.uniforms.repeat.value.copy(value) }, }, }) this.setValues(parameters) } MeshLineMaterial.prototype = Object.create(THREE.ShaderMaterial.prototype) MeshLineMaterial.prototype.constructor = MeshLineMaterial MeshLineMaterial.prototype.isMeshLineMaterial = true MeshLineMaterial.prototype.copy = function(source) { THREE.ShaderMaterial.prototype.copy.call(this, source) this.lineWidth = source.lineWidth this.map = source.map this.useMap = source.useMap this.alphaMap = source.alphaMap this.useAlphaMap = source.useAlphaMap this.color.copy(source.color) this.opacity = source.opacity this.resolution.copy(source.resolution) this.sizeAttenuation = source.sizeAttenuation this.dashArray.copy(source.dashArray) this.dashOffset.copy(source.dashOffset) this.dashRatio.copy(source.dashRatio) this.useDash = source.useDash this.visibility = source.visibility this.alphaTest = source.alphaTest this.repeat.copy(source.repeat) return this } if (typeof exports !== 'undefined') { if (typeof module !== 'undefined' && module.exports) { exports = module.exports = { MeshLine: MeshLine, MeshLineMaterial: MeshLineMaterial, MeshLineRaycast: MeshLineRaycast, } } exports.MeshLine = MeshLine exports.MeshLineMaterial = MeshLineMaterial exports.MeshLineRaycast = MeshLineRaycast } else { root.MeshLine = MeshLine root.MeshLineMaterial = MeshLineMaterial root.MeshLineRaycast = MeshLineRaycast } }.call(this))