//#define SHOW_TILE_BOUNDARIES uniform vec4 u_initialColor; #if TEXTURE_UNITS > 0 uniform sampler2D u_dayTextures[TEXTURE_UNITS]; uniform vec4 u_dayTextureTranslationAndScale[TEXTURE_UNITS]; #ifdef APPLY_ALPHA uniform float u_dayTextureAlpha[TEXTURE_UNITS]; #endif #ifdef APPLY_BRIGHTNESS uniform float u_dayTextureBrightness[TEXTURE_UNITS]; #endif #ifdef APPLY_CONTRAST uniform float u_dayTextureContrast[TEXTURE_UNITS]; #endif #ifdef APPLY_HUE uniform float u_dayTextureHue[TEXTURE_UNITS]; #endif #ifdef APPLY_SATURATION uniform float u_dayTextureSaturation[TEXTURE_UNITS]; #endif #ifdef APPLY_GAMMA uniform float u_dayTextureOneOverGamma[TEXTURE_UNITS]; #endif uniform vec4 u_dayTextureTexCoordsRectangle[TEXTURE_UNITS]; #endif #ifdef SHOW_REFLECTIVE_OCEAN uniform sampler2D u_waterMask; uniform vec4 u_waterMaskTranslationAndScale; uniform float u_zoomedOutOceanSpecularIntensity; #endif #ifdef SHOW_OCEAN_WAVES uniform sampler2D u_oceanNormalMap; #endif #ifdef ENABLE_DAYNIGHT_SHADING uniform vec2 u_lightingFadeDistance; #endif varying vec3 v_positionMC; varying vec3 v_positionEC; varying vec2 v_textureCoordinates; varying vec3 v_normalMC; varying vec3 v_normalEC; vec4 sampleAndBlend( vec4 previousColor, sampler2D texture, vec2 tileTextureCoordinates, vec4 textureCoordinateRectangle, vec4 textureCoordinateTranslationAndScale, float textureAlpha, float textureBrightness, float textureContrast, float textureHue, float textureSaturation, float textureOneOverGamma) { // This crazy step stuff sets the alpha to 0.0 if this following condition is true: // tileTextureCoordinates.s < textureCoordinateRectangle.s || // tileTextureCoordinates.s > textureCoordinateRectangle.p || // tileTextureCoordinates.t < textureCoordinateRectangle.t || // tileTextureCoordinates.t > textureCoordinateRectangle.q // In other words, the alpha is zero if the fragment is outside the rectangle // covered by this texture. Would an actual 'if' yield better performance? vec2 alphaMultiplier = step(textureCoordinateRectangle.st, tileTextureCoordinates); textureAlpha = textureAlpha * alphaMultiplier.x * alphaMultiplier.y; alphaMultiplier = step(vec2(0.0), textureCoordinateRectangle.pq - tileTextureCoordinates); textureAlpha = textureAlpha * alphaMultiplier.x * alphaMultiplier.y; vec2 translation = textureCoordinateTranslationAndScale.xy; vec2 scale = textureCoordinateTranslationAndScale.zw; vec2 textureCoordinates = tileTextureCoordinates * scale + translation; vec4 sample = texture2D(texture, textureCoordinates); vec3 color = sample.rgb; float alpha = sample.a; #ifdef APPLY_BRIGHTNESS color = mix(vec3(0.0), color, textureBrightness); #endif #ifdef APPLY_CONTRAST color = mix(vec3(0.5), color, textureContrast); #endif #ifdef APPLY_HUE color = czm_hue(color, textureHue); #endif #ifdef APPLY_SATURATION color = czm_saturation(color, textureSaturation); #endif #ifdef APPLY_GAMMA color = pow(color, vec3(textureOneOverGamma)); #endif float sourceAlpha = alpha * textureAlpha; float outAlpha = mix(previousColor.a, 1.0, sourceAlpha); vec3 outColor = mix(previousColor.rgb * previousColor.a, color, sourceAlpha) / outAlpha; return vec4(outColor, outAlpha); } vec4 computeDayColor(vec4 initialColor, vec2 textureCoordinates); vec4 computeWaterColor(vec3 positionEyeCoordinates, vec2 textureCoordinates, mat3 enuToEye, vec4 imageryColor, float specularMapValue); void main() { // The clamp below works around an apparent bug in Chrome Canary v23.0.1241.0 // where the fragment shader sees textures coordinates < 0.0 and > 1.0 for the // fragments on the edges of tiles even though the vertex shader is outputting // coordinates strictly in the 0-1 range. vec4 color = computeDayColor(u_initialColor, clamp(v_textureCoordinates, 0.0, 1.0)); #ifdef SHOW_TILE_BOUNDARIES if (v_textureCoordinates.x < (1.0/256.0) || v_textureCoordinates.x > (255.0/256.0) || v_textureCoordinates.y < (1.0/256.0) || v_textureCoordinates.y > (255.0/256.0)) { color = vec4(1.0, 0.0, 0.0, 1.0); } #endif #if defined(SHOW_REFLECTIVE_OCEAN) || defined(ENABLE_DAYNIGHT_SHADING) vec3 normalMC = normalize(czm_geodeticSurfaceNormal(v_positionMC, vec3(0.0), vec3(1.0))); // normalized surface normal in model coordinates vec3 normalEC = normalize(czm_normal3D * normalMC); // normalized surface normal in eye coordiantes #elif defined(ENABLE_VERTEX_LIGHTING) vec3 normalMC = normalize(v_normalMC); // normalized surface normal in model coordinates vec3 normalEC = normalize(v_normalEC); // normalized surface normal in eye coordiantes #endif #ifdef SHOW_REFLECTIVE_OCEAN vec2 waterMaskTranslation = u_waterMaskTranslationAndScale.xy; vec2 waterMaskScale = u_waterMaskTranslationAndScale.zw; vec2 waterMaskTextureCoordinates = v_textureCoordinates * waterMaskScale + waterMaskTranslation; float mask = texture2D(u_waterMask, waterMaskTextureCoordinates).r; if (mask > 0.0) { mat3 enuToEye = czm_eastNorthUpToEyeCoordinates(v_positionMC, normalEC); vec2 ellipsoidTextureCoordinates = czm_ellipsoidWgs84TextureCoordinates(normalMC); vec2 ellipsoidFlippedTextureCoordinates = czm_ellipsoidWgs84TextureCoordinates(normalMC.zyx); vec2 textureCoordinates = mix(ellipsoidTextureCoordinates, ellipsoidFlippedTextureCoordinates, czm_morphTime * smoothstep(0.9, 0.95, normalMC.z)); color = computeWaterColor(v_positionEC, textureCoordinates, enuToEye, color, mask); } #endif #ifdef ENABLE_VERTEX_LIGHTING float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_sunDirectionEC, normalEC) * 0.9 + 0.3, 0.0, 1.0); gl_FragColor = vec4(color.rgb * diffuseIntensity, color.a); #elif defined(ENABLE_DAYNIGHT_SHADING) float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_sunDirectionEC, normalEC) * 5.0 + 0.3, 0.0, 1.0); float cameraDist = length(czm_view[3]); float fadeOutDist = u_lightingFadeDistance.x; float fadeInDist = u_lightingFadeDistance.y; float t = clamp((cameraDist - fadeOutDist) / (fadeInDist - fadeOutDist), 0.0, 1.0); diffuseIntensity = mix(1.0, diffuseIntensity, t); gl_FragColor = vec4(color.rgb * diffuseIntensity, color.a); #else gl_FragColor = color; #endif } #ifdef SHOW_REFLECTIVE_OCEAN float waveFade(float edge0, float edge1, float x) { float y = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return pow(1.0 - y, 5.0); } float linearFade(float edge0, float edge1, float x) { return clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); } // Based on water rendering by Jonas Wagner: // http://29a.ch/2012/7/19/webgl-terrain-rendering-water-fog // low altitude wave settings const float oceanFrequencyLowAltitude = 825000.0; const float oceanAnimationSpeedLowAltitude = 0.004; const float oceanOneOverAmplitudeLowAltitude = 1.0 / 2.0; const float oceanSpecularIntensity = 0.5; // high altitude wave settings const float oceanFrequencyHighAltitude = 125000.0; const float oceanAnimationSpeedHighAltitude = 0.008; const float oceanOneOverAmplitudeHighAltitude = 1.0 / 2.0; vec4 computeWaterColor(vec3 positionEyeCoordinates, vec2 textureCoordinates, mat3 enuToEye, vec4 imageryColor, float specularMapValue) { vec3 positionToEyeEC = -positionEyeCoordinates; float positionToEyeECLength = length(positionToEyeEC); // The double normalize below works around a bug in Firefox on Android devices. vec3 normalizedpositionToEyeEC = normalize(normalize(positionToEyeEC)); // Fade out the waves as the camera moves far from the surface. float waveIntensity = waveFade(70000.0, 1000000.0, positionToEyeECLength); #ifdef SHOW_OCEAN_WAVES // high altitude waves float time = czm_frameNumber * oceanAnimationSpeedHighAltitude; vec4 noise = czm_getWaterNoise(u_oceanNormalMap, textureCoordinates * oceanFrequencyHighAltitude, time, 0.0); vec3 normalTangentSpaceHighAltitude = vec3(noise.xy, noise.z * oceanOneOverAmplitudeHighAltitude); // low altitude waves time = czm_frameNumber * oceanAnimationSpeedLowAltitude; noise = czm_getWaterNoise(u_oceanNormalMap, textureCoordinates * oceanFrequencyLowAltitude, time, 0.0); vec3 normalTangentSpaceLowAltitude = vec3(noise.xy, noise.z * oceanOneOverAmplitudeLowAltitude); // blend the 2 wave layers based on distance to surface float highAltitudeFade = linearFade(0.0, 60000.0, positionToEyeECLength); float lowAltitudeFade = 1.0 - linearFade(20000.0, 60000.0, positionToEyeECLength); vec3 normalTangentSpace = (highAltitudeFade * normalTangentSpaceHighAltitude) + (lowAltitudeFade * normalTangentSpaceLowAltitude); normalTangentSpace = normalize(normalTangentSpace); // fade out the normal perturbation as we move farther from the water surface normalTangentSpace.xy *= waveIntensity; normalTangentSpace = normalize(normalTangentSpace); #else vec3 normalTangentSpace = vec3(0.0, 0.0, 1.0); #endif vec3 normalEC = enuToEye * normalTangentSpace; const vec3 waveHighlightColor = vec3(0.3, 0.45, 0.6); // Use diffuse light to highlight the waves float diffuseIntensity = czm_getLambertDiffuse(czm_sunDirectionEC, normalEC); vec3 diffuseHighlight = waveHighlightColor * diffuseIntensity; #ifdef SHOW_OCEAN_WAVES // Where diffuse light is low or non-existent, use wave highlights based solely on // the wave bumpiness and no particular light direction. float tsPerturbationRatio = normalTangentSpace.z; vec3 nonDiffuseHighlight = mix(waveHighlightColor * 5.0 * (1.0 - tsPerturbationRatio), vec3(0.0), diffuseIntensity); #else vec3 nonDiffuseHighlight = vec3(0.0); #endif // Add specular highlights in 3D, and in all modes when zoomed in. float specularIntensity = czm_getSpecular(czm_sunDirectionEC, normalizedpositionToEyeEC, normalEC, 10.0) + 0.25 * czm_getSpecular(czm_moonDirectionEC, normalizedpositionToEyeEC, normalEC, 10.0); float surfaceReflectance = mix(0.0, mix(u_zoomedOutOceanSpecularIntensity, oceanSpecularIntensity, waveIntensity), specularMapValue); float specular = specularIntensity * surfaceReflectance; return vec4(imageryColor.rgb + diffuseHighlight + nonDiffuseHighlight + specular, imageryColor.a); } #endif // #ifdef SHOW_REFLECTIVE_OCEAN