/**
 * @license
 * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 
 * * Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice,
 *   this list of conditions and the following disclaimer in the documentation
 *   and/or other materials provided with the distribution.
 * * Neither the name of the project nor the names of its contributors may be
 *   used to endorse or promote products derived from this software without
 *   specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Modifications made by Analytical Graphics, Inc.
 */
 
 // Code:  http://sponeil.net/
 // GPU Gems 2 Article:  http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html
  
attribute vec4 position;

uniform float fCameraHeight;
uniform float fCameraHeight2;
uniform float fOuterRadius;     // The outer (atmosphere) radius
uniform float fOuterRadius2;    // fOuterRadius^2
uniform float fInnerRadius;     // The inner (planetary) radius
uniform float fScale;           // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth;      // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth

const float Kr = 0.0025;
const float fKr4PI = Kr * 4.0 * czm_pi;
const float Km = 0.0015;
const float fKm4PI = Km * 4.0 * czm_pi;
const float ESun = 15.0;
const float fKmESun = Km * ESun;
const float fKrESun = Kr * ESun;
const vec3 v3InvWavelength = vec3(
    5.60204474633241,  // Red = 1.0 / Math.pow(0.650, 4.0)
    9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0)
    19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0)
const float rayleighScaleDepth = 0.25;
          
const int nSamples = 2;
const float fSamples = 2.0;

varying vec3 v_rayleighColor;
varying vec3 v_mieColor;
varying vec3 v_toCamera;
varying vec3 v_positionEC;

float scale(float fCos)
{
    float x = 1.0 - fCos;
    return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}

void main(void)
{
    // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
    vec3 v3Pos = position.xyz;
    vec3 v3Ray = v3Pos - czm_viewerPositionWC;
    float fFar = length(v3Ray);
    v3Ray /= fFar;

#ifdef SKY_FROM_SPACE
    // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
    float B = 2.0 * dot(czm_viewerPositionWC, v3Ray);
    float C = fCameraHeight2 - fOuterRadius2;
    float fDet = max(0.0, B*B - 4.0 * C);
    float fNear = 0.5 * (-B - sqrt(fDet));

    // Calculate the ray's starting position, then calculate its scattering offset
    vec3 v3Start = czm_viewerPositionWC + v3Ray * fNear;
    fFar -= fNear;
    float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
    float fStartDepth = exp(-1.0 / fScaleDepth);
    float fStartOffset = fStartDepth*scale(fStartAngle);
#else // SKY_FROM_ATMOSPHERE
    // Calculate the ray's starting position, then calculate its scattering offset
    vec3 v3Start = czm_viewerPositionWC;
    float fHeight = length(v3Start);
    float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight));
    float fStartAngle = dot(v3Ray, v3Start) / fHeight;
    float fStartOffset = fDepth*scale(fStartAngle);
#endif

    // Initialize the scattering loop variables
    float fSampleLength = fFar / fSamples;
    float fScaledLength = fSampleLength * fScale;
    vec3 v3SampleRay = v3Ray * fSampleLength;
    vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;

    // Now loop through the sample rays
    vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
    for(int i=0; i<nSamples; i++)
    {
        float fHeight = length(v3SamplePoint);
        float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
        vec3 lightPosition = normalize(czm_viewerPositionWC); // czm_sunDirectionWC
        float fLightAngle = dot(lightPosition, v3SamplePoint) / fHeight;
        float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
        float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle)));
        vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
        v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
        v3SamplePoint += v3SampleRay;
    }

    // Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
    v_mieColor = v3FrontColor * fKmESun;
    v_rayleighColor = v3FrontColor * (v3InvWavelength * fKrESun);
    v_toCamera = czm_viewerPositionWC - v3Pos;
    v_positionEC = (czm_modelView * position).xyz;
    gl_Position = czm_modelViewProjection * position;
}