<!DOCTYPE html> <html> <!-- Copyright The Closure Library Authors. All Rights Reserved. Use of this source code is governed by the Apache License, Version 2.0. See the COPYING file for details. --> <head> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <title>Closure Performance Tests - Vector Array math</title> <link rel="stylesheet" type="text/css" href="../testing/performancetable.css"/> <script type="text/javascript" src="../base.js"></script> <script type="text/javascript"> goog.require('goog.testing.jsunit'); goog.require('goog.testing.PerformanceTable'); goog.require('goog.vec.Vec4'); goog.require('goog.vec.Mat4'); </script> </head> <body> <h1>Closure Performance Tests - Vector Array Math</h1> <p> <strong>User-agent:</strong> <script type="text/javascript">document.write(navigator.userAgent);</script> </p> <p> These tests compare various methods of performing vector operations on arrays of vectors. </p> <div id="perfTable"></div> <hr> <script type="text/javascript"> var table = new goog.testing.PerformanceTable( goog.dom.getElement('perfTable')); function createRandomFloat32Array(length) { var array = new Float32Array(length); for (var i = 0; i < length; i++) { array[i] = Math.random(); } return array; } function createRandomIndexArray(length) { var array = []; for (var i = 0; i < length; i++) { array[i] = Math.floor(Math.random() * length); array[i] = Math.min(length - 1, array[i]); } return array; } function createRandomVec4Array(length) { var a = []; for (var i = 0; i < length; i++) { a[i] = goog.vec.Vec4.createFromValues( Math.random(), Math.random(), Math.random(), Math.random()); } return a; } function createRandomMat4() { var m = goog.vec.Mat4.createFromValues( Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random(), Math.random()); return m; } function createRandomMat4Array(length) { var m = []; for (var i = 0; i < length; i++) { m[i] = createRandomMat4(); } return m; } /** * Vec4Object is a 4-vector object with x,y,z,w components. * @param {number} x The x component. * @param {number} y The y component. * @param {number} z The z component. * @param {number} w The w component. * @constructor */ Vec4Object = function(x, y, z, w) { this.x = x; this.y = y; this.z = z; this.w = w; }; /** * Add two vectors. * @param {Vec4Object} v0 A vector. * @param {Vec4Object} v1 Another vector. * @param {Vec4Object} r The result. */ Vec4Object.add = function(v0, v1, r) { r.x = v0.x + v1.x; r.y = v0.y + v1.y; r.z = v0.z + v1.z; r.w = v0.w + v1.w; }; function createRandomVec4ObjectArray(length) { var a = []; for (var i = 0; i < length; i++) { a[i] = new Vec4Object( Math.random(), Math.random(), Math.random(), Math.random()); } return a; } function setVec4FromArray(v, a, o) { v[0] = a[o + 0]; v[1] = a[o + 1]; v[2] = a[o + 2]; v[3] = a[o + 3]; } function setArrayFromVec4(a, o, v) { a[o + 0] = v[0]; a[o + 1] = v[1]; a[o + 2] = v[2]; a[o + 3] = v[3]; } /** * This is the same as goog.vec.Vec4.add(). Use this to avoid namespace lookup * overheads. * @param {goog.vec.Vec4.Vec4Like} v0 A vector. * @param {goog.vec.Vec4.Vec4Like} v1 Another vector. * @param {goog.vec.Vec4.Vec4Like} r The result. */ function addVec4(v0, v1, r) { r[0] = v0[0] + v1[0]; r[1] = v0[1] + v1[1]; r[2] = v0[2] + v1[2]; r[3] = v0[3] + v1[3]; } function addVec4ByOffset(v0Buf, v0Off, v1Buf, v1Off, rBuf, rOff) { rBuf[rOff + 0] = v0Buf[v0Off + 0] + v1Buf[v1Off + 0]; rBuf[rOff + 1] = v0Buf[v0Off + 1] + v1Buf[v1Off + 1]; rBuf[rOff + 2] = v0Buf[v0Off + 2] + v1Buf[v1Off + 2]; rBuf[rOff + 3] = v0Buf[v0Off + 3] + v1Buf[v1Off + 3]; } function addVec4ByOptionalOffset(v0, v1, r, opt_v0Off, opt_v1Off, opt_rOff) { if (opt_v0Off && opt_v1Off && opt_rOff) { r[opt_rOff + 0] = v0[opt_v0Off + 0] + v1[opt_v1Off + 0]; r[opt_rOff + 1] = v0[opt_v0Off + 1] + v1[opt_v1Off + 1]; r[opt_rOff + 2] = v0[opt_v0Off + 2] + v1[opt_v1Off + 2]; r[opt_rOff + 3] = v0[opt_v0Off + 3] + v1[opt_v1Off + 3]; } else { r[0] = v0[0] + v1[0]; r[1] = v0[1] + v1[1]; r[2] = v0[2] + v1[2]; r[3] = v0[3] + v1[3]; } } function mat4MultVec4ByOffset(mBuf, mOff, vBuf, vOff, rBuf, rOff) { var x = vBuf[vOff + 0], y = vBuf[vOff + 1], z = vBuf[vOff + 2], w = vBuf[vOff + 3]; rBuf[rOff + 0] = x * mBuf[mOff + 0] + y * mBuf[mOff + 4] + z * mBuf[mOff + 8] + w * mBuf[mOff + 12]; rBuf[rOff + 1] = x * mBuf[mOff + 1] + y * mBuf[mOff + 5] + z * mBuf[mOff + 9] + w * mBuf[mOff + 13]; rBuf[rOff + 2] = x * mBuf[mOff + 2] + y * mBuf[mOff + 6] + z * mBuf[mOff + 10] + w * mBuf[mOff + 14]; rBuf[rOff + 3] = x * mBuf[mOff + 3] + y * mBuf[mOff + 7] + z * mBuf[mOff + 11] + w * mBuf[mOff + 15]; } var NUM_ITERATIONS = 200000; function testAddVec4ByOffset() { var nVecs = NUM_ITERATIONS; var nVals = nVecs * 4; var a0 = createRandomFloat32Array(nVals); var a1 = createRandomFloat32Array(nVals); var a2 = new Float32Array(nVals); table.run( function() { for (var i = 0; i < nVecs; i++) { addVec4ByOffset(a0, i * 4, a1, i * 4, a2, i * 4); } }, 'Add vectors using offsets'); } function testAddVec4ByOptionalOffset() { var nVecs = NUM_ITERATIONS; var nVals = nVecs * 4; var a0 = createRandomFloat32Array(nVals); var a1 = createRandomFloat32Array(nVals); var a2 = new Float32Array(nVals); table.run( function() { for (var i = 0; i < nVecs; i++) { addVec4ByOptionalOffset(a0, a1, a2, i * 4, i * 4, i * 4); } }, 'Add vectors with optional offsets (requires branch)'); } /** * Check the overhead of using an array of individual * Vec4s (Float32Arrays of length 4). */ function testAddVec4ByVec4s() { var nVecs = NUM_ITERATIONS; var a0 = createRandomVec4Array(nVecs); var a1 = createRandomVec4Array(nVecs); var a2 = createRandomVec4Array(nVecs); table.run( function() { for (var i = 0; i < nVecs; i++) { addVec4(a0[i], a1[i], a2[i]); } }, 'Add vectors using an array of Vec4s (Float32Arrays of length 4)'); } function testAddVec4ByTmp() { var nVecs = NUM_ITERATIONS; var nVals = nVecs * 4; var a0 = createRandomFloat32Array(nVals); var a1 = createRandomFloat32Array(nVals); var a2 = new Float32Array(nVals); table.run( function() { var t0 = new Float32Array(4); var t1 = new Float32Array(4); for (var i = 0; i < nVecs; i++) { setVec4FromArray(t0, a0, i * 4); setVec4FromArray(t1, a1, i * 4); addVec4(t0, t1, t0); setArrayFromVec4(a2, i * 4, t0); } }, 'Add vectors using tmps'); } /** * Check the overhead of using an array of Objects with the implicit hash * lookups for the x,y,z,w components. */ function testAddVec4ByObjects() { var nVecs = NUM_ITERATIONS; var a0 = createRandomVec4ObjectArray(nVecs); var a1 = createRandomVec4ObjectArray(nVecs); var a2 = createRandomVec4ObjectArray(nVecs); table.run( function() { for (var i = 0; i < nVecs; i++) { Vec4Object.add(a0[i], a1[i], a2[i]); } }, 'Add vectors using an array of Objects ' + '(with implicit hash lookups for the x,y,z,w components)'); } function testAddVec4BySubarray() { var nVecs = NUM_ITERATIONS; var nVals = nVecs * 4; var a0 = createRandomFloat32Array(nVals); var a1 = createRandomFloat32Array(nVals); var a2 = new Float32Array(nVals); table.run( function() { for (var i = 0; i < nVecs; i++) { var t0 = a0.subarray(i * 4 * 4); var t1 = a1.subarray(i * 4 * 4); var t2 = a2.subarray(i * 4 * 4); addVec4(t0, t1, t2); } }, 'Add vectors using Float32Array.subarray()'); } function testAddVec4ByView() { var nVecs = NUM_ITERATIONS; var nVals = nVecs * 4; var a0 = createRandomFloat32Array(nVals); var a1 = createRandomFloat32Array(nVals); var a2 = new Float32Array(nVals); table.run( function() { for (var i = 0; i < nVecs; i++) { var t0 = new Float32Array(a0.buffer, i * 4 * 4); var t1 = new Float32Array(a1.buffer, i * 4 * 4); var t2 = new Float32Array(a2.buffer, i * 4 * 4); addVec4(t0, t1, t2); } }, 'Add vectors using Float32 view'); } function testMat4MultVec4ByOffset() { var nVecs = NUM_ITERATIONS; var nVecVals = nVecs * 4; var nMatVals = nVecs * 16; var m = createRandomFloat32Array(nMatVals); var a0 = createRandomFloat32Array(nVecVals); var a1 = new Float32Array(nVecVals); table.run( function() { for (var i = 0; i < nVecs; i++) { mat4MultVec4ByOffset(m, i * 16, a0, i * 4, a1, i * 4); } }, 'vec4 = mat4 * vec4 using offsets.'); } /** * Check the overhead of using an array of individual * Vec4s (Float32Arrays of length 4). */ function testMat4MultVec4ByVec4s() { var nVecs = NUM_ITERATIONS; var a0 = createRandomVec4Array(nVecs); var a1 = createRandomVec4Array(nVecs); var m = createRandomMat4Array(nVecs); table.run( function() { for (var i = 0; i < nVecs; i++) { goog.vec.Mat4.multVec4(m[i], a0[i], a1[i]); } }, 'vec4 = mat4 * vec4 using arrays of Vec4s and Mat4s'); } /** * Do 10x as many for the one vector tests. * @type {number} */ var NUM_ONE_ITERATIONS = NUM_ITERATIONS * 10; function testAddOneVec4ByOffset() { var a0 = createRandomFloat32Array(4); var a1 = createRandomFloat32Array(4); var a2 = new Float32Array(4); table.run( function() { for (var i = 0; i < NUM_ONE_ITERATIONS; i++) { addVec4ByOffset(a0, 0, a1, 0, a2, 0); } }, 'Add one vector using offset of 0'); } function testAddOneVec4() { var a0 = createRandomFloat32Array(4); var a1 = createRandomFloat32Array(4); var a2 = new Float32Array(4); table.run( function() { for (var i = 0; i < NUM_ONE_ITERATIONS; i++) { addVec4(a0, a1, a2); } }, 'Add one vector'); } function testAddOneVec4ByOptionalOffset() { var a0 = createRandomFloat32Array(4); var a1 = createRandomFloat32Array(4); var a2 = new Float32Array(4); table.run( function() { for (var i = 0; i < NUM_ONE_ITERATIONS; i++) { addVec4ByOptionalOffset(a0, a1, a2); } }, 'Add one vector with optional offsets (requires branch)'); } function testAddRandomVec4ByOffset() { var nVecs = NUM_ITERATIONS; var nVals = nVecs * 4; var a0 = createRandomFloat32Array(nVals); var a1 = createRandomFloat32Array(nVals); var a2 = new Float32Array(nVals); var i0 = createRandomIndexArray(nVecs); var i1 = createRandomIndexArray(nVecs); var i2 = createRandomIndexArray(nVecs); table.run( function() { for (var i = 0; i < nVecs; i++) { addVec4ByOffset(a0, i0[i] * 4, a1, i1[i] * 4, a2, i2[i] * 4); } }, 'Add random vectors using offsets'); } function testAddRandomVec4ByVec4s() { var nVecs = NUM_ITERATIONS; var a0 = createRandomVec4Array(nVecs); var a1 = createRandomVec4Array(nVecs); var a2 = createRandomVec4Array(nVecs); var i0 = createRandomIndexArray(nVecs); var i1 = createRandomIndexArray(nVecs); var i2 = createRandomIndexArray(nVecs); table.run( function() { for (var i = 0; i < nVecs; i++) { addVec4(a0[i0[i]], a1[i1[i]], a2[i2[i]]); } }, 'Add random vectors using an array of Vec4s'); } // Make sure the tests are run in the order they are defined. var testCase = new goog.testing.TestCase(document.title); testCase.order = goog.testing.TestCase.Order.NATURAL; testCase.autoDiscoverTests(); G_testRunner.initialize(testCase); </script> </body> </html>