/** * @license * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the project nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Modifications made by Analytical Graphics, Inc. */ // Code: http://sponeil.net/ // GPU Gems 2 Article: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html attribute vec4 position; uniform float fCameraHeight; uniform float fCameraHeight2; uniform float fOuterRadius; // The outer (atmosphere) radius uniform float fOuterRadius2; // fOuterRadius^2 uniform float fInnerRadius; // The inner (planetary) radius uniform float fScale; // 1 / (fOuterRadius - fInnerRadius) uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found) uniform float fScaleOverScaleDepth; // fScale / fScaleDepth const float Kr = 0.0025; const float fKr4PI = Kr * 4.0 * czm_pi; const float Km = 0.0015; const float fKm4PI = Km * 4.0 * czm_pi; const float ESun = 15.0; const float fKmESun = Km * ESun; const float fKrESun = Kr * ESun; const vec3 v3InvWavelength = vec3( 5.60204474633241, // Red = 1.0 / Math.pow(0.650, 4.0) 9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0) 19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0) const float rayleighScaleDepth = 0.25; const int nSamples = 2; const float fSamples = 2.0; varying vec3 v_rayleighColor; varying vec3 v_mieColor; varying vec3 v_toCamera; varying vec3 v_positionEC; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) vec3 v3Pos = position.xyz; vec3 v3Ray = v3Pos - czm_viewerPositionWC; float fFar = length(v3Ray); v3Ray /= fFar; #ifdef SKY_FROM_SPACE // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float B = 2.0 * dot(czm_viewerPositionWC, v3Ray); float C = fCameraHeight2 - fOuterRadius2; float fDet = max(0.0, B*B - 4.0 * C); float fNear = 0.5 * (-B - sqrt(fDet)); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = czm_viewerPositionWC + v3Ray * fNear; fFar -= fNear; float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius; float fStartDepth = exp(-1.0 / fScaleDepth); float fStartOffset = fStartDepth*scale(fStartAngle); #else // SKY_FROM_ATMOSPHERE // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = czm_viewerPositionWC; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); #endif // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); for(int i=0; i