(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o= 7.0 and in ASCII or to be any version in Binary format. * * Supports: * Mesh Generation (Positional Data) * Normal Data (Per Vertex Drawing Instance) * UV Data (Per Vertex Drawing Instance) * Skinning * Animation * - Separated Animations based on stacks. * - Skeletal & Non-Skeletal Animations * NURBS (Open, Closed and Periodic forms) * * Needs Support: * Euler rotation order * * * FBX format references: * https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure * * Binary format specification: * https://code.blender.org/2013/08/fbx-binary-file-format-specification/ * https://wiki.rogiken.org/specifications/file-format/fbx/ (more detail but Japanese) */ // Monkeypatch for texture, model->geometry ) // and details the connection type function parseConnections(FBXTree) { var connectionMap = new Map(); if ('Connections' in FBXTree) { var rawConnections = FBXTree.Connections.connections; rawConnections.forEach(function (rawConnection) { var fromID = rawConnection[0]; var toID = rawConnection[1]; var relationship = rawConnection[2]; if (!connectionMap.has(fromID)) { connectionMap.set(fromID, { parents: [], children: [] }); } var parentRelationship = { ID: toID, relationship: relationship }; connectionMap.get(fromID).parents.push(parentRelationship); if (!connectionMap.has(toID)) { connectionMap.set(toID, { parents: [], children: [] }); } var childRelationship = { ID: fromID, relationship: relationship }; connectionMap.get(toID).children.push(childRelationship); }); } return connectionMap; } // Parse FBXTree.Objects.Video for embedded image data // These images are connected to textures in FBXTree.Objects.Textures // via FBXTree.Connections. function parseImages(FBXTree) { var images = {}; var blobs = {}; if ('Video' in FBXTree.Objects) { var videoNodes = FBXTree.Objects.Video; for (var nodeID in videoNodes) { var videoNode = videoNodes[nodeID]; var id = parseInt(nodeID); images[id] = videoNode.Filename; // raw image data is in videoNode.Content if ('Content' in videoNode) { var arrayBufferContent = videoNode.Content instanceof ArrayBuffer && videoNode.Content.byteLength > 0; var base64Content = typeof videoNode.Content === 'string' && videoNode.Content !== ''; if (arrayBufferContent || base64Content) { var image = parseImage(videoNodes[nodeID]); blobs[videoNode.Filename] = image; } } } } for (var id in images) { var filename = images[id]; if (blobs[filename] !== undefined) images[id] = blobs[filename];else images[id] = images[id].split('\\').pop(); } return images; } // Parse embedded image data in FBXTree.Video.Content function parseImage(videoNode) { var content = videoNode.Content; var fileName = videoNode.RelativeFilename || videoNode.Filename; var extension = fileName.slice(fileName.lastIndexOf('.') + 1).toLowerCase(); var type; switch (extension) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; default: console.warn('FBXLoader: Image type "' + extension + '" is not supported.'); return; } if (typeof content === 'string') { // ASCII format return 'data:' + type + ';base64,' + content; } else { // Binary Format var array = new Uint8Array(content); return window.URL.createObjectURL(new Blob([array], { type: type })); } } // Parse nodes in FBXTree.Objects.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.Video function parseTextures(FBXTree, loader, images, connections) { var textureMap = new Map(); if ('Texture' in FBXTree.Objects) { var textureNodes = FBXTree.Objects.Texture; for (var nodeID in textureNodes) { var texture = parseTexture(textureNodes[nodeID], loader, images, connections); textureMap.set(parseInt(nodeID), texture); } } return textureMap; } // Parse individual node in FBXTree.Objects.Texture function parseTexture(textureNode, loader, images, connections) { var texture = loadTexture(textureNode, loader, images, connections); texture.ID = textureNode.id; texture.name = textureNode.attrName; var wrapModeU = textureNode.WrapModeU; var wrapModeV = textureNode.WrapModeV; var valueU = wrapModeU !== undefined ? wrapModeU.value : 0; var valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? THREE.RepeatWrapping : THREE.ClampToEdgeWrapping; if ('Scaling' in textureNode) { var values = textureNode.Scaling.value; texture.repeat.x = values[0]; texture.repeat.y = values[1]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using THREE.TextureLoader function loadTexture(textureNode, loader, images, connections) { var fileName; var currentPath = loader.path; var children = connections.get(textureNode.id).children; if (children !== undefined && children.length > 0 && images[children[0].ID] !== undefined) { fileName = images[children[0].ID]; if (fileName.indexOf('blob:') === 0 || fileName.indexOf('data:') === 0) { loader.setPath(undefined); } } var texture = loader.load(fileName); loader.setPath(currentPath); return texture; } // Parse nodes in FBXTree.Objects.Material function parseMaterials(FBXTree, textureMap, connections) { var materialMap = new Map(); if ('Material' in FBXTree.Objects) { var materialNodes = FBXTree.Objects.Material; for (var nodeID in materialNodes) { var material = parseMaterial(FBXTree, materialNodes[nodeID], textureMap, connections); if (material !== null) materialMap.set(parseInt(nodeID), material); } } return materialMap; } // Parse single node in FBXTree.Objects.Material // Materials are connected to texture maps in FBXTree.Objects.Textures // FBX format currently only supports Lambert and Phong shading models function parseMaterial(FBXTree, materialNode, textureMap, connections) { var ID = materialNode.id; var name = materialNode.attrName; var type = materialNode.ShadingModel; //Case where FBX wraps shading model in property object. if ((typeof type === 'undefined' ? 'undefined' : _typeof(type)) === 'object') { type = type.value; } // Ignore unused materials which don't have any connections. if (!connections.has(ID)) return null; var parameters = parseParameters(FBXTree, materialNode, textureMap, ID, connections); var material; switch (type.toLowerCase()) { case 'phong': material = new THREE.MeshPhongMaterial(); break; case 'lambert': material = new THREE.MeshLambertMaterial(); break; default: console.warn('THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type); material = new THREE.MeshPhongMaterial({ color: 0x3300ff }); break; } material.setValues(parameters); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material function parseParameters(FBXTree, properties, textureMap, ID, connections) { var parameters = {}; if (properties.BumpFactor) { parameters.bumpScale = properties.BumpFactor.value; } if (properties.Diffuse) { parameters.color = new THREE.Color().fromArray(properties.Diffuse.value); } if (properties.DisplacementFactor) { parameters.displacementScale = properties.DisplacementFactor.value; } if (properties.ReflectionFactor) { parameters.reflectivity = properties.ReflectionFactor.value; } if (properties.Specular) { parameters.specular = new THREE.Color().fromArray(properties.Specular.value); } if (properties.Shininess) { parameters.shininess = properties.Shininess.value; } if (properties.Emissive) { parameters.emissive = new THREE.Color().fromArray(properties.Emissive.value); } if (properties.EmissiveFactor) { parameters.emissiveIntensity = parseFloat(properties.EmissiveFactor.value); } if (properties.Opacity) { parameters.opacity = parseFloat(properties.Opacity.value); } if (parameters.opacity < 1.0) { parameters.transparent = true; } connections.get(ID).children.forEach(function (child) { var type = child.relationship; switch (type) { case 'Bump': parameters.bumpMap = textureMap.get(child.ID); break; case 'DiffuseColor': parameters.map = getTexture(FBXTree, textureMap, child.ID, connections); break; case 'DisplacementColor': parameters.displacementMap = getTexture(FBXTree, textureMap, child.ID, connections); break; case 'EmissiveColor': parameters.emissiveMap = getTexture(FBXTree, textureMap, child.ID, connections); break; case 'NormalMap': parameters.normalMap = getTexture(FBXTree, textureMap, child.ID, connections); break; case 'ReflectionColor': parameters.envMap = getTexture(FBXTree, textureMap, child.ID, connections); parameters.envMap.mapping = THREE.EquirectangularReflectionMapping; break; case 'SpecularColor': parameters.specularMap = getTexture(FBXTree, textureMap, child.ID, connections); break; case 'TransparentColor': parameters.alphaMap = getTexture(FBXTree, textureMap, child.ID, connections); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn('THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type); break; } }); return parameters; } // get a texture from the textureMap for use by a material. function getTexture(FBXTree, textureMap, id, connections) { // if the texture is a layered texture, just use the first layer and issue a warning if ('LayeredTexture' in FBXTree.Objects && id in FBXTree.Objects.LayeredTexture) { console.warn('THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.'); id = connections.get(id).children[0].ID; } return textureMap.get(id); } // Parse nodes in FBXTree.Objects.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. function parseDeformers(FBXTree, connections) { var skeletons = {}; if ('Deformer' in FBXTree.Objects) { var DeformerNodes = FBXTree.Objects.Deformer; for (var nodeID in DeformerNodes) { var deformerNode = DeformerNodes[nodeID]; if (deformerNode.attrType === 'Skin') { var relationships = connections.get(parseInt(nodeID)); var skeleton = parseSkeleton(relationships, DeformerNodes); skeleton.ID = nodeID; if (relationships.parents.length > 1) console.warn('THREE.FBXLoader: skeleton attached to more than one geometry is not supported.'); skeleton.geometryID = relationships.parents[0].ID; skeletons[nodeID] = skeleton; } } } return skeletons; } // Parse single nodes in FBXTree.Objects.Deformer // The top level deformer nodes have type 'Skin' and subDeformer nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone function parseSkeleton(connections, deformerNodes) { var rawBones = []; connections.children.forEach(function (child) { var subDeformerNode = deformerNodes[child.ID]; if (subDeformerNode.attrType !== 'Cluster') return; var rawBone = { ID: child.ID, indices: [], weights: [], transform: new THREE.Matrix4().fromArray(subDeformerNode.Transform.a), transformLink: new THREE.Matrix4().fromArray(subDeformerNode.TransformLink.a), linkMode: subDeformerNode.Mode }; if ('Indexes' in subDeformerNode) { rawBone.indices = subDeformerNode.Indexes.a; rawBone.weights = subDeformerNode.Weights.a; } rawBones.push(rawBone); }); return { rawBones: rawBones, bones: [] }; } // Parse nodes in FBXTree.Objects.Geometry function parseGeometries(FBXTree, connections, skeletons) { var geometryMap = new Map(); if ('Geometry' in FBXTree.Objects) { var geometryNodes = FBXTree.Objects.Geometry; for (var nodeID in geometryNodes) { var relationships = connections.get(parseInt(nodeID)); var geo = parseGeometry(FBXTree, relationships, geometryNodes[nodeID], skeletons); geometryMap.set(parseInt(nodeID), geo); } } return geometryMap; } // Parse single node in FBXTree.Objects.Geometry function parseGeometry(FBXTree, relationships, geometryNode, skeletons) { switch (geometryNode.attrType) { case 'Mesh': return parseMeshGeometry(FBXTree, relationships, geometryNode, skeletons); break; case 'NurbsCurve': return parseNurbsGeometry(geometryNode); break; } } // Parse single node mesh geometry in FBXTree.Objects.Geometry function parseMeshGeometry(FBXTree, relationships, geometryNode, skeletons) { var modelNodes = relationships.parents.map(function (parent) { return FBXTree.Objects.Model[parent.ID]; }); // don't create geometry if it is not associated with any models if (modelNodes.length === 0) return; var skeleton = relationships.children.reduce(function (skeleton, child) { if (skeletons[child.ID] !== undefined) skeleton = skeletons[child.ID]; return skeleton; }, null); var preTransform = new THREE.Matrix4(); // TODO: if there is more than one model associated with the geometry, AND the models have // different geometric transforms, then this will cause problems // if ( modelNodes.length > 1 ) { } // For now just assume one model and get the preRotations from that var modelNode = modelNodes[0]; if ('GeometricRotation' in modelNode) { var array = modelNode.GeometricRotation.value.map(THREE.Math.degToRad); array[3] = 'ZYX'; preTransform.makeRotationFromEuler(new THREE.Euler().fromArray(array)); } if ('GeometricTranslation' in modelNode) { preTransform.setPosition(new THREE.Vector3().fromArray(modelNode.GeometricTranslation.value)); } return genGeometry(FBXTree, relationships, geometryNode, skeleton, preTransform); } // Generate a THREE.BufferGeometry from a node in FBXTree.Objects.Geometry function genGeometry(FBXTree, relationships, geometryNode, skeleton, preTransform) { var vertexPositions = geometryNode.Vertices.a; var vertexIndices = geometryNode.PolygonVertexIndex.a; // create arrays to hold the final data used to build the buffergeometry var vertexBuffer = []; var normalBuffer = []; var colorsBuffer = []; var uvsBuffer = []; var materialIndexBuffer = []; var vertexWeightsBuffer = []; var weightsIndicesBuffer = []; if (geometryNode.LayerElementColor) { var colorInfo = getColors(geometryNode.LayerElementColor[0]); } if (geometryNode.LayerElementMaterial) { var materialInfo = getMaterials(geometryNode.LayerElementMaterial[0]); } if (geometryNode.LayerElementNormal) { var normalInfo = getNormals(geometryNode.LayerElementNormal[0]); } if (geometryNode.LayerElementUV) { var uvInfo = []; var i = 0; while (geometryNode.LayerElementUV[i]) { uvInfo.push(getUVs(geometryNode.LayerElementUV[i])); i++; } } var weightTable = {}; if (skeleton !== null) { skeleton.rawBones.forEach(function (rawBone, i) { // loop over the bone's vertex indices and weights rawBone.indices.forEach(function (index, j) { if (weightTable[index] === undefined) weightTable[index] = []; weightTable[index].push({ id: i, weight: rawBone.weights[j] }); }); }); } var polygonIndex = 0; var faceLength = 0; var displayedWeightsWarning = false; // these will hold data for a single face var vertexPositionIndexes = []; var faceNormals = []; var faceColors = []; var faceUVs = []; var faceWeights = []; var faceWeightIndices = []; vertexIndices.forEach(function (vertexIndex, polygonVertexIndex) { var endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex multiply by -1 and subtract 1: -3 * - 1 - 1 = 2 if (vertexIndex < 0) { vertexIndex = vertexIndex ^ -1; // equivalent to ( x * -1 ) - 1 vertexIndices[polygonVertexIndex] = vertexIndex; endOfFace = true; } var weightIndices = []; var weights = []; vertexPositionIndexes.push(vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2); if (colorInfo) { var data = getData(polygonVertexIndex, polygonIndex, vertexIndex, colorInfo); faceColors.push(data[0], data[1], data[2]); } if (skeleton) { if (weightTable[vertexIndex] !== undefined) { weightTable[vertexIndex].forEach(function (wt) { weights.push(wt.weight); weightIndices.push(wt.id); }); } if (weights.length > 4) { if (!displayedWeightsWarning) { console.warn('THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.'); displayedWeightsWarning = true; } var wIndex = [0, 0, 0, 0]; var Weight = [0, 0, 0, 0]; weights.forEach(function (weight, weightIndex) { var currentWeight = weight; var currentIndex = weightIndices[weightIndex]; Weight.forEach(function (comparedWeight, comparedWeightIndex, comparedWeightArray) { if (currentWeight > comparedWeight) { comparedWeightArray[comparedWeightIndex] = currentWeight; currentWeight = comparedWeight; var tmp = wIndex[comparedWeightIndex]; wIndex[comparedWeightIndex] = currentIndex; currentIndex = tmp; } }); }); weightIndices = wIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s while (weights.length < 4) { weights.push(0); weightIndices.push(0); } for (var i = 0; i < 4; ++i) { faceWeights.push(weights[i]); faceWeightIndices.push(weightIndices[i]); } } if (normalInfo) { var data = getData(polygonVertexIndex, polygonIndex, vertexIndex, normalInfo); faceNormals.push(data[0], data[1], data[2]); } if (materialInfo && materialInfo.mappingType !== 'AllSame') { var materialIndex = getData(polygonVertexIndex, polygonIndex, vertexIndex, materialInfo)[0]; } if (uvInfo) { uvInfo.forEach(function (uv, i) { var data = getData(polygonVertexIndex, polygonIndex, vertexIndex, uv); if (faceUVs[i] === undefined) { faceUVs[i] = []; } faceUVs[i].push(data[0]); faceUVs[i].push(data[1]); }); } faceLength++; // we have reached the end of a face - it may have 4 sides though // in which case the data is split to represent two 3 sided faces if (endOfFace) { for (var i = 2; i < faceLength; i++) { vertexBuffer.push(vertexPositions[vertexPositionIndexes[0]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[1]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[2]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[(i - 1) * 3]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[(i - 1) * 3 + 1]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[(i - 1) * 3 + 2]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[i * 3]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[i * 3 + 1]]); vertexBuffer.push(vertexPositions[vertexPositionIndexes[i * 3 + 2]]); if (skeleton) { vertexWeightsBuffer.push(faceWeights[0]); vertexWeightsBuffer.push(faceWeights[1]); vertexWeightsBuffer.push(faceWeights[2]); vertexWeightsBuffer.push(faceWeights[3]); vertexWeightsBuffer.push(faceWeights[(i - 1) * 4]); vertexWeightsBuffer.push(faceWeights[(i - 1) * 4 + 1]); vertexWeightsBuffer.push(faceWeights[(i - 1) * 4 + 2]); vertexWeightsBuffer.push(faceWeights[(i - 1) * 4 + 3]); vertexWeightsBuffer.push(faceWeights[i * 4]); vertexWeightsBuffer.push(faceWeights[i * 4 + 1]); vertexWeightsBuffer.push(faceWeights[i * 4 + 2]); vertexWeightsBuffer.push(faceWeights[i * 4 + 3]); weightsIndicesBuffer.push(faceWeightIndices[0]); weightsIndicesBuffer.push(faceWeightIndices[1]); weightsIndicesBuffer.push(faceWeightIndices[2]); weightsIndicesBuffer.push(faceWeightIndices[3]); weightsIndicesBuffer.push(faceWeightIndices[(i - 1) * 4]); weightsIndicesBuffer.push(faceWeightIndices[(i - 1) * 4 + 1]); weightsIndicesBuffer.push(faceWeightIndices[(i - 1) * 4 + 2]); weightsIndicesBuffer.push(faceWeightIndices[(i - 1) * 4 + 3]); weightsIndicesBuffer.push(faceWeightIndices[i * 4]); weightsIndicesBuffer.push(faceWeightIndices[i * 4 + 1]); weightsIndicesBuffer.push(faceWeightIndices[i * 4 + 2]); weightsIndicesBuffer.push(faceWeightIndices[i * 4 + 3]); } if (colorInfo) { colorsBuffer.push(faceColors[0]); colorsBuffer.push(faceColors[1]); colorsBuffer.push(faceColors[2]); colorsBuffer.push(faceColors[(i - 1) * 3]); colorsBuffer.push(faceColors[(i - 1) * 3 + 1]); colorsBuffer.push(faceColors[(i - 1) * 3 + 2]); colorsBuffer.push(faceColors[i * 3]); colorsBuffer.push(faceColors[i * 3 + 1]); colorsBuffer.push(faceColors[i * 3 + 2]); } if (materialInfo && materialInfo.mappingType !== 'AllSame') { materialIndexBuffer.push(materialIndex); materialIndexBuffer.push(materialIndex); materialIndexBuffer.push(materialIndex); } if (normalInfo) { normalBuffer.push(faceNormals[0]); normalBuffer.push(faceNormals[1]); normalBuffer.push(faceNormals[2]); normalBuffer.push(faceNormals[(i - 1) * 3]); normalBuffer.push(faceNormals[(i - 1) * 3 + 1]); normalBuffer.push(faceNormals[(i - 1) * 3 + 2]); normalBuffer.push(faceNormals[i * 3]); normalBuffer.push(faceNormals[i * 3 + 1]); normalBuffer.push(faceNormals[i * 3 + 2]); } if (uvInfo) { uvInfo.forEach(function (uv, j) { if (uvsBuffer[j] === undefined) uvsBuffer[j] = []; uvsBuffer[j].push(faceUVs[j][0]); uvsBuffer[j].push(faceUVs[j][1]); uvsBuffer[j].push(faceUVs[j][(i - 1) * 2]); uvsBuffer[j].push(faceUVs[j][(i - 1) * 2 + 1]); uvsBuffer[j].push(faceUVs[j][i * 2]); uvsBuffer[j].push(faceUVs[j][i * 2 + 1]); }); } } polygonIndex++; faceLength = 0; // reset arrays for the next face vertexPositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } }); var geo = new THREE.BufferGeometry(); geo.name = geometryNode.name; var positionAttribute = new THREE.Float32BufferAttribute(vertexBuffer, 3); preTransform.applyToBufferAttribute(positionAttribute); geo.addAttribute('position', positionAttribute); if (colorsBuffer.length > 0) { geo.addAttribute('color', new THREE.Float32BufferAttribute(colorsBuffer, 3)); } if (skeleton) { geo.addAttribute('skinIndex', new THREE.Float32BufferAttribute(weightsIndicesBuffer, 4)); geo.addAttribute('skinWeight', new THREE.Float32BufferAttribute(vertexWeightsBuffer, 4)); // used later to bind the skeleton to the model geo.FBX_Deformer = skeleton; } if (normalBuffer.length > 0) { var normalAttribute = new THREE.Float32BufferAttribute(normalBuffer, 3); var normalMatrix = new THREE.Matrix3().getNormalMatrix(preTransform); normalMatrix.applyToBufferAttribute(normalAttribute); geo.addAttribute('normal', normalAttribute); } uvsBuffer.forEach(function (uvBuffer, i) { // subsequent uv buffers are called 'uv1', 'uv2', ... var name = 'uv' + (i + 1).toString(); // the first uv buffer is just called 'uv' if (i === 0) { name = 'uv'; } geo.addAttribute(name, new THREE.Float32BufferAttribute(uvsBuffer[i], 2)); }); if (materialInfo && materialInfo.mappingType !== 'AllSame') { // Convert the material indices of each vertex into rendering groups on the geometry. var prevMaterialIndex = materialIndexBuffer[0]; var startIndex = 0; materialIndexBuffer.forEach(function (currentIndex, i) { if (currentIndex !== prevMaterialIndex) { geo.addGroup(startIndex, i - startIndex, prevMaterialIndex); prevMaterialIndex = currentIndex; startIndex = i; } }); // the loop above doesn't add the last group, do that here. if (geo.groups.length > 0) { var lastGroup = geo.groups[geo.groups.length - 1]; var lastIndex = lastGroup.start + lastGroup.count; if (lastIndex !== materialIndexBuffer.length) { geo.addGroup(lastIndex, materialIndexBuffer.length - lastIndex, prevMaterialIndex); } } // case where there are multiple materials but the whole geometry is only // using one of them if (geo.groups.length === 0) { geo.addGroup(0, materialIndexBuffer.length, materialIndexBuffer[0]); } } return geo; } // Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists function getNormals(NormalNode) { var mappingType = NormalNode.MappingInformationType; var referenceType = NormalNode.ReferenceInformationType; var buffer = NormalNode.Normals.a; var indexBuffer = []; if (referenceType === 'IndexToDirect') { if ('NormalIndex' in NormalNode) { indexBuffer = NormalNode.NormalIndex.a; } else if ('NormalsIndex' in NormalNode) { indexBuffer = NormalNode.NormalsIndex.a; } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists function getUVs(UVNode) { var mappingType = UVNode.MappingInformationType; var referenceType = UVNode.ReferenceInformationType; var buffer = UVNode.UV.a; var indexBuffer = []; if (referenceType === 'IndexToDirect') { indexBuffer = UVNode.UVIndex.a; } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists function getColors(ColorNode) { var mappingType = ColorNode.MappingInformationType; var referenceType = ColorNode.ReferenceInformationType; var buffer = ColorNode.Colors.a; var indexBuffer = []; if (referenceType === 'IndexToDirect') { indexBuffer = ColorNode.ColorIndex.a; } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists function getMaterials(MaterialNode) { var mappingType = MaterialNode.MappingInformationType; var referenceType = MaterialNode.ReferenceInformationType; if (mappingType === 'NoMappingInformation') { return { dataSize: 1, buffer: [0], indices: [0], mappingType: 'AllSame', referenceType: referenceType }; } var materialIndexBuffer = MaterialNode.Materials.a; // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect.So we create an intermediate buffer that points to the index in the buffer, // for conforming with the other functions we've written for other data. var materialIndices = []; for (var i = 0; i < materialIndexBuffer.length; ++i) { materialIndices.push(i); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType: mappingType, referenceType: referenceType }; } // Functions use the infoObject and given indices to return value array of geometry. // Parameters: // - polygonVertexIndex - Index of vertex in draw order (which index of the index buffer refers to this vertex). // - polygonIndex - Index of polygon in geometry. // - vertexIndex - Index of vertex inside vertex buffer (used because some data refers to old index buffer that we don't use anymore). // - infoObject: can be materialInfo, normalInfo, UVInfo or colorInfo // Index type: // - Direct: index is same as polygonVertexIndex // - IndexToDirect: infoObject has it's own set of indices var dataArray = []; var GetData = { ByPolygonVertex: { Direct: function Direct(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var from = polygonVertexIndex * infoObject.dataSize; var to = polygonVertexIndex * infoObject.dataSize + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); }, IndexToDirect: function IndexToDirect(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var index = infoObject.indices[polygonVertexIndex]; var from = index * infoObject.dataSize; var to = index * infoObject.dataSize + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); } }, ByPolygon: { Direct: function Direct(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var from = polygonIndex * infoObject.dataSize; var to = polygonIndex * infoObject.dataSize + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); }, IndexToDirect: function IndexToDirect(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var index = infoObject.indices[polygonIndex]; var from = index * infoObject.dataSize; var to = index * infoObject.dataSize + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); } }, ByVertice: { Direct: function Direct(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var from = vertexIndex * infoObject.dataSize; var to = vertexIndex * infoObject.dataSize + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); } }, AllSame: { IndexToDirect: function IndexToDirect(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var from = infoObject.indices[0] * infoObject.dataSize; var to = infoObject.indices[0] * infoObject.dataSize + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); } } }; function getData(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { return GetData[infoObject.mappingType][infoObject.referenceType](polygonVertexIndex, polygonIndex, vertexIndex, infoObject); } // Generate a NurbGeometry from a node in FBXTree.Objects.Geometry function parseNurbsGeometry(geometryNode) { if (THREE.NURBSCurve === undefined) { console.error('THREE.FBXLoader: The loader relies on THREE.NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.'); return new THREE.BufferGeometry(); } var order = parseInt(geometryNode.Order); if (isNaN(order)) { console.error('THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geometryNode.Order, geometryNode.id); return new THREE.BufferGeometry(); } var degree = order - 1; var knots = geometryNode.KnotVector.a; var controlPoints = []; var pointsValues = geometryNode.Points.a; for (var i = 0, l = pointsValues.length; i < l; i += 4) { controlPoints.push(new THREE.Vector4().fromArray(pointsValues, i)); } var startKnot, endKnot; if (geometryNode.Form === 'Closed') { controlPoints.push(controlPoints[0]); } else if (geometryNode.Form === 'Periodic') { startKnot = degree; endKnot = knots.length - 1 - startKnot; for (var i = 0; i < degree; ++i) { controlPoints.push(controlPoints[i]); } } var curve = new THREE.NURBSCurve(degree, knots, controlPoints, startKnot, endKnot); var vertices = curve.getPoints(controlPoints.length * 7); var positions = new Float32Array(vertices.length * 3); vertices.forEach(function (vertex, i) { vertex.toArray(positions, i * 3); }); var geometry = new THREE.BufferGeometry(); geometry.addAttribute('position', new THREE.BufferAttribute(positions, 3)); return geometry; } // create the main THREE.Group() to be returned by the loader function parseScene(FBXTree, connections, skeletons, geometryMap, materialMap) { var sceneGraph = new THREE.Group(); var modelMap = parseModels(FBXTree, skeletons, geometryMap, materialMap, connections); var modelNodes = FBXTree.Objects.Model; modelMap.forEach(function (model) { var modelNode = modelNodes[model.ID]; setLookAtProperties(FBXTree, model, modelNode, connections, sceneGraph); var parentConnections = connections.get(model.ID).parents; parentConnections.forEach(function (connection) { var parent = modelMap.get(connection.ID); if (parent !== undefined) parent.add(model); }); if (model.parent === null) { sceneGraph.add(model); } }); bindSkeleton(FBXTree, skeletons, geometryMap, modelMap, connections); addAnimations(FBXTree, connections, sceneGraph); createAmbientLight(FBXTree, sceneGraph); return sceneGraph; } // parse nodes in FBXTree.Objects.Model function parseModels(FBXTree, skeletons, geometryMap, materialMap, connections) { var modelMap = new Map(); var modelNodes = FBXTree.Objects.Model; for (var nodeID in modelNodes) { var id = parseInt(nodeID); var node = modelNodes[nodeID]; var relationships = connections.get(id); var model = buildSkeleton(relationships, skeletons, id, node.attrName); if (!model) { switch (node.attrType) { case 'Camera': model = createCamera(FBXTree, relationships); break; case 'Light': model = createLight(FBXTree, relationships); break; case 'Mesh': model = createMesh(FBXTree, relationships, geometryMap, materialMap); break; case 'NurbsCurve': model = createCurve(relationships, geometryMap); break; case 'LimbNode': // usually associated with a Bone, however if a Bone was not created we'll make a Group instead case 'Null': default: model = new THREE.Group(); break; } model.name = THREE.PropertyBinding.sanitizeNodeName(node.attrName); model.ID = id; } setModelTransforms(FBXTree, model, node); modelMap.set(id, model); } return modelMap; } function buildSkeleton(relationships, skeletons, id, name) { var bone = null; relationships.parents.forEach(function (parent) { for (var ID in skeletons) { var skeleton = skeletons[ID]; skeleton.rawBones.forEach(function (rawBone, i) { if (rawBone.ID === parent.ID) { var subBone = bone; bone = new THREE.Bone(); bone.matrixWorld.copy(rawBone.transformLink); // set name and id here - otherwise in cases where "subBone" is created it will not have a name / id bone.name = THREE.PropertyBinding.sanitizeNodeName(name); bone.ID = id; skeleton.bones[i] = bone; // In cases where a bone is shared between multiple meshes // duplicate the bone here and and it as a child of the first bone if (subBone !== null) { bone.add(subBone); } } }); } }); return bone; } // create a THREE.PerspectiveCamera or THREE.OrthographicCamera function createCamera(FBXTree, relationships) { var model; var cameraAttribute; relationships.children.forEach(function (child) { var attr = FBXTree.Objects.NodeAttribute[child.ID]; if (attr !== undefined) { cameraAttribute = attr; } }); if (cameraAttribute === undefined) { model = new THREE.Object3D(); } else { var type = 0; if (cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1) { type = 1; } var nearClippingPlane = 1; if (cameraAttribute.NearPlane !== undefined) { nearClippingPlane = cameraAttribute.NearPlane.value / 1000; } var farClippingPlane = 1000; if (cameraAttribute.FarPlane !== undefined) { farClippingPlane = cameraAttribute.FarPlane.value / 1000; } var width = window.innerWidth; var height = window.innerHeight; if (cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } var aspect = width / height; var fov = 45; if (cameraAttribute.FieldOfView !== undefined) { fov = cameraAttribute.FieldOfView.value; } var focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null; switch (type) { case 0: // Perspective model = new THREE.PerspectiveCamera(fov, aspect, nearClippingPlane, farClippingPlane); if (focalLength !== null) model.setFocalLength(focalLength); break; case 1: // Orthographic model = new THREE.OrthographicCamera(-width / 2, width / 2, height / 2, -height / 2, nearClippingPlane, farClippingPlane); break; default: console.warn('THREE.FBXLoader: Unknown camera type ' + type + '.'); model = new THREE.Object3D(); break; } } return model; } // Create a THREE.DirectionalLight, THREE.PointLight or THREE.SpotLight function createLight(FBXTree, relationships) { var model; var lightAttribute; relationships.children.forEach(function (child) { var attr = FBXTree.Objects.NodeAttribute[child.ID]; if (attr !== undefined) { lightAttribute = attr; } }); if (lightAttribute === undefined) { model = new THREE.Object3D(); } else { var type; // LightType can be undefined for Point lights if (lightAttribute.LightType === undefined) { type = 0; } else { type = lightAttribute.LightType.value; } var color = 0xffffff; if (lightAttribute.Color !== undefined) { color = new THREE.Color().fromArray(lightAttribute.Color.value); } var intensity = lightAttribute.Intensity === undefined ? 1 : lightAttribute.Intensity.value / 100; // light disabled if (lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0) { intensity = 0; } var distance = 0; if (lightAttribute.FarAttenuationEnd !== undefined) { if (lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value / 1000; } } // TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? var decay = 1; switch (type) { case 0: // Point model = new THREE.PointLight(color, intensity, distance, decay); break; case 1: // Directional model = new THREE.DirectionalLight(color, intensity); break; case 2: // Spot var angle = Math.PI / 3; if (lightAttribute.InnerAngle !== undefined) { angle = THREE.Math.degToRad(lightAttribute.InnerAngle.value); } var penumbra = 0; if (lightAttribute.OuterAngle !== undefined) { // TODO: this is not correct - FBX calculates outer and inner angle in degrees // with OuterAngle > InnerAngle && OuterAngle <= Math.PI // while three.js uses a penumbra between (0, 1) to attenuate the inner angle penumbra = THREE.Math.degToRad(lightAttribute.OuterAngle.value); penumbra = Math.max(penumbra, 1); } model = new THREE.SpotLight(color, intensity, distance, angle, penumbra, decay); break; default: console.warn('THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a THREE.PointLight.'); model = new THREE.PointLight(color, intensity); break; } if (lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1) { model.castShadow = true; } } return model; } function createMesh(FBXTree, relationships, geometryMap, materialMap) { var model; var geometry = null; var material = null; var materials = []; // get geometry and materials(s) from connections relationships.children.forEach(function (child) { if (geometryMap.has(child.ID)) { geometry = geometryMap.get(child.ID); } if (materialMap.has(child.ID)) { materials.push(materialMap.get(child.ID)); } }); if (materials.length > 1) { material = materials; } else if (materials.length > 0) { material = materials[0]; } else { material = new THREE.MeshPhongMaterial({ color: 0xcccccc }); materials.push(material); } if ('color' in geometry.attributes) { materials.forEach(function (material) { material.vertexColors = THREE.VertexColors; }); } if (geometry.FBX_Deformer) { materials.forEach(function (material) { material.skinning = true; }); model = new THREE.SkinnedMesh(geometry, material); } else { model = new THREE.Mesh(geometry, material); } return model; } function createCurve(relationships, geometryMap) { var geometry = relationships.children.reduce(function (geo, child) { if (geometryMap.has(child.ID)) geo = geometryMap.get(child.ID); return geo; }, null); // FBX does not list materials for Nurbs lines, so we'll just put our own in here. var material = new THREE.LineBasicMaterial({ color: 0x3300ff, linewidth: 1 }); return new THREE.Line(geometry, material); } // Parse ambient color in FBXTree.GlobalSettings - if it's not set to black (default), create an ambient light function createAmbientLight(FBXTree, sceneGraph) { if ('GlobalSettings' in FBXTree && 'AmbientColor' in FBXTree.GlobalSettings) { var ambientColor = FBXTree.GlobalSettings.AmbientColor.value; var r = ambientColor[0]; var g = ambientColor[1]; var b = ambientColor[2]; if (r !== 0 || g !== 0 || b !== 0) { var color = new THREE.Color(r, g, b); sceneGraph.add(new THREE.AmbientLight(color, 1)); } } } function setLookAtProperties(FBXTree, model, modelNode, connections, sceneGraph) { if ('LookAtProperty' in modelNode) { var children = connections.get(model.ID).children; children.forEach(function (child) { if (child.relationship === 'LookAtProperty') { var lookAtTarget = FBXTree.Objects.Model[child.ID]; if ('Lcl_Translation' in lookAtTarget) { var pos = lookAtTarget.Lcl_Translation.value; // DirectionalLight, SpotLight if (model.target !== undefined) { model.target.position.fromArray(pos); sceneGraph.add(model.target); } else { // Cameras and other Object3Ds model.lookAt(new THREE.Vector3().fromArray(pos)); } } } }); } } // parse the model node for transform details and apply them to the model function setModelTransforms(FBXTree, model, modelNode) { // http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html if ('RotationOrder' in modelNode) { var enums = ['XYZ', // default 'XZY', 'YZX', 'ZXY', 'YXZ', 'ZYX', 'SphericXYZ']; var value = parseInt(modelNode.RotationOrder.value, 10); if (value > 0 && value < 6) { // model.rotation.order = enums[ value ]; // Note: Euler order other than XYZ is currently not supported, so just display a warning for now console.warn('THREE.FBXLoader: unsupported Euler Order: %s. Currently only XYZ order is supported. Animations and rotations may be incorrect.', enums[value]); } else if (value === 6) { console.warn('THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.'); } } if ('Lcl_Translation' in modelNode) { model.position.fromArray(modelNode.Lcl_Translation.value); } if ('Lcl_Rotation' in modelNode) { var rotation = modelNode.Lcl_Rotation.value.map(THREE.Math.degToRad); rotation.push('ZYX'); model.rotation.fromArray(rotation); } if ('Lcl_Scaling' in modelNode) { model.scale.fromArray(modelNode.Lcl_Scaling.value); } if ('PreRotation' in modelNode) { var array = modelNode.PreRotation.value.map(THREE.Math.degToRad); array[3] = 'ZYX'; var preRotations = new THREE.Euler().fromArray(array); preRotations = new THREE.Quaternion().setFromEuler(preRotations); var currentRotation = new THREE.Quaternion().setFromEuler(model.rotation); preRotations.multiply(currentRotation); model.rotation.setFromQuaternion(preRotations, 'ZYX'); } } function bindSkeleton(FBXTree, skeletons, geometryMap, modelMap, connections) { var bindMatrices = parsePoseNodes(FBXTree); for (var ID in skeletons) { var skeleton = skeletons[ID]; var parents = connections.get(parseInt(skeleton.ID)).parents; parents.forEach(function (parent) { if (geometryMap.has(parent.ID)) { var geoID = parent.ID; var geoRelationships = connections.get(geoID); geoRelationships.parents.forEach(function (geoConnParent) { if (modelMap.has(geoConnParent.ID)) { var model = modelMap.get(geoConnParent.ID); model.bind(new THREE.Skeleton(skeleton.bones), bindMatrices[geoConnParent.ID]); } }); } }); } } function parsePoseNodes(FBXTree) { var bindMatrices = {}; if ('Pose' in FBXTree.Objects) { var BindPoseNode = FBXTree.Objects.Pose; for (var nodeID in BindPoseNode) { if (BindPoseNode[nodeID].attrType === 'BindPose') { var poseNodes = BindPoseNode[nodeID].PoseNode; if (Array.isArray(poseNodes)) { poseNodes.forEach(function (poseNode) { bindMatrices[poseNode.Node] = new THREE.Matrix4().fromArray(poseNode.Matrix.a); }); } else { bindMatrices[poseNodes.Node] = new THREE.Matrix4().fromArray(poseNodes.Matrix.a); } } } } return bindMatrices; } function parseAnimations(FBXTree, connections) { // since the actual transformation data is stored in FBXTree.Objects.AnimationCurve, // if this is undefined we can safely assume there are no animations if (FBXTree.Objects.AnimationCurve === undefined) return undefined; var curveNodesMap = parseAnimationCurveNodes(FBXTree); parseAnimationCurves(FBXTree, connections, curveNodesMap); var layersMap = parseAnimationLayers(FBXTree, connections, curveNodesMap); var rawClips = parseAnimStacks(FBXTree, connections, layersMap); return rawClips; } // parse nodes in FBXTree.Objects.AnimationCurveNode // each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation ) // and is referenced by an AnimationLayer function parseAnimationCurveNodes(FBXTree) { var rawCurveNodes = FBXTree.Objects.AnimationCurveNode; var curveNodesMap = new Map(); for (var nodeID in rawCurveNodes) { var rawCurveNode = rawCurveNodes[nodeID]; if (rawCurveNode.attrName.match(/S|R|T/) !== null) { var curveNode = { id: rawCurveNode.id, attr: rawCurveNode.attrName, curves: {} }; curveNodesMap.set(curveNode.id, curveNode); } } return curveNodesMap; } // parse nodes in FBXTree.Objects.AnimationCurve and connect them up to // previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated // axis ( e.g. times and values of x rotation) function parseAnimationCurves(FBXTree, connections, curveNodesMap) { var rawCurves = FBXTree.Objects.AnimationCurve; for (var nodeID in rawCurves) { var animationCurve = { id: rawCurves[nodeID].id, times: rawCurves[nodeID].KeyTime.a.map(convertFBXTimeToSeconds), values: rawCurves[nodeID].KeyValueFloat.a }; var relationships = connections.get(animationCurve.id); if (relationships !== undefined) { var animationCurveID = relationships.parents[0].ID; var animationCurveRelationship = relationships.parents[0].relationship; var axis = ''; if (animationCurveRelationship.match(/X/)) { axis = 'x'; } else if (animationCurveRelationship.match(/Y/)) { axis = 'y'; } else if (animationCurveRelationship.match(/Z/)) { axis = 'z'; } else { continue; } curveNodesMap.get(animationCurveID).curves[axis] = animationCurve; } } } // parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references // to various AnimationCurveNodes and is referenced by an AnimationStack node // note: theoretically a stack can multiple layers, however in practice there always seems to be one per stack function parseAnimationLayers(FBXTree, connections, curveNodesMap) { var rawLayers = FBXTree.Objects.AnimationLayer; var layersMap = new Map(); for (var nodeID in rawLayers) { var layerCurveNodes = []; var connection = connections.get(parseInt(nodeID)); if (connection !== undefined) { // all the animationCurveNodes used in the layer var children = connection.children; children.forEach(function (child, i) { if (curveNodesMap.has(child.ID)) { var curveNode = curveNodesMap.get(child.ID); // check that the curves are defined for at least one axis, otherwise ignore the curveNode if (curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined) { if (layerCurveNodes[i] === undefined) { var modelID; connections.get(child.ID).parents.forEach(function (parent) { if (parent.relationship !== undefined) modelID = parent.ID; }); var rawModel = FBXTree.Objects.Model[modelID.toString()]; var node = { modelName: THREE.PropertyBinding.sanitizeNodeName(rawModel.attrName), initialPosition: [0, 0, 0], initialRotation: [0, 0, 0], initialScale: [1, 1, 1] }; if ('Lcl_Translation' in rawModel) node.initialPosition = rawModel.Lcl_Translation.value; if ('Lcl_Rotation' in rawModel) node.initialRotation = rawModel.Lcl_Rotation.value; if ('Lcl_Scaling' in rawModel) node.initialScale = rawModel.Lcl_Scaling.value; // if the animated model is pre rotated, we'll have to apply the pre rotations to every // animation value as well if ('PreRotation' in rawModel) node.preRotations = rawModel.PreRotation.value; layerCurveNodes[i] = node; } layerCurveNodes[i][curveNode.attr] = curveNode; } } }); layersMap.set(parseInt(nodeID), layerCurveNodes); } } return layersMap; } // parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation // hierarchy. Each Stack node will be used to create a THREE.AnimationClip function parseAnimStacks(FBXTree, connections, layersMap) { var rawStacks = FBXTree.Objects.AnimationStack; // connect the stacks (clips) up to the layers var rawClips = {}; for (var nodeID in rawStacks) { var children = connections.get(parseInt(nodeID)).children; if (children.length > 1) { // it seems like stacks will always be associated with a single layer. But just in case there are files // where there are multiple layers per stack, we'll display a warning console.warn('THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.'); } var layer = layersMap.get(children[0].ID); rawClips[nodeID] = { name: rawStacks[nodeID].attrName, layer: layer }; } return rawClips; } // take raw animation data from parseAnimations and connect it up to the loaded models function addAnimations(FBXTree, connections, sceneGraph) { sceneGraph.animations = []; var rawClips = parseAnimations(FBXTree, connections); if (rawClips === undefined) return; for (var key in rawClips) { var rawClip = rawClips[key]; var clip = addClip(rawClip); sceneGraph.animations.push(clip); } } function addClip(rawClip) { var tracks = []; rawClip.layer.forEach(function (rawTracks) { tracks = tracks.concat(generateTracks(rawTracks)); }); return new THREE.AnimationClip(rawClip.name, -1, tracks); } function generateTracks(rawTracks) { var tracks = []; if (rawTracks.T !== undefined && Object.keys(rawTracks.T.curves).length > 0) { var positionTrack = generateVectorTrack(rawTracks.modelName, rawTracks.T.curves, rawTracks.initialPosition, 'position'); if (positionTrack !== undefined) tracks.push(positionTrack); } if (rawTracks.R !== undefined && Object.keys(rawTracks.R.curves).length > 0) { var rotationTrack = generateRotationTrack(rawTracks.modelName, rawTracks.R.curves, rawTracks.initialRotation, rawTracks.preRotations); if (rotationTrack !== undefined) tracks.push(rotationTrack); } if (rawTracks.S !== undefined && Object.keys(rawTracks.S.curves).length > 0) { var scaleTrack = generateVectorTrack(rawTracks.modelName, rawTracks.S.curves, rawTracks.initialScale, 'scale'); if (scaleTrack !== undefined) tracks.push(scaleTrack); } return tracks; } function generateVectorTrack(modelName, curves, initialValue, type) { var times = getTimesForAllAxes(curves); var values = getKeyframeTrackValues(times, curves, initialValue); return new THREE.VectorKeyframeTrack(modelName + '.' + type, times, values); } function generateRotationTrack(modelName, curves, initialValue, preRotations) { if (curves.x !== undefined) curves.x.values = curves.x.values.map(THREE.Math.degToRad); if (curves.y !== undefined) curves.y.values = curves.y.values.map(THREE.Math.degToRad); if (curves.z !== undefined) curves.z.values = curves.z.values.map(THREE.Math.degToRad); var times = getTimesForAllAxes(curves); var values = getKeyframeTrackValues(times, curves, initialValue); if (preRotations !== undefined) { preRotations = preRotations.map(THREE.Math.degToRad); preRotations.push('ZYX'); preRotations = new THREE.Euler().fromArray(preRotations); preRotations = new THREE.Quaternion().setFromEuler(preRotations); } var quaternion = new THREE.Quaternion(); var euler = new THREE.Euler(); var quaternionValues = []; for (var i = 0; i < values.length; i += 3) { euler.set(values[i], values[i + 1], values[i + 2], 'ZYX'); quaternion.setFromEuler(euler); if (preRotations !== undefined) quaternion.premultiply(preRotations); quaternion.toArray(quaternionValues, i / 3 * 4); } return new THREE.QuaternionKeyframeTrack(modelName + '.quaternion', times, quaternionValues); } function getKeyframeTrackValues(times, curves, initialValue) { var prevValue = initialValue; var values = []; var xIndex = -1; var yIndex = -1; var zIndex = -1; times.forEach(function (time) { if (curves.x) xIndex = curves.x.times.indexOf(time); if (curves.y) yIndex = curves.y.times.indexOf(time); if (curves.z) zIndex = curves.z.times.indexOf(time); // if there is an x value defined for this frame, use that if (xIndex !== -1) { var xValue = curves.x.values[xIndex]; values.push(xValue); prevValue[0] = xValue; } else { // otherwise use the x value from the previous frame values.push(prevValue[0]); } if (yIndex !== -1) { var yValue = curves.y.values[yIndex]; values.push(yValue); prevValue[1] = yValue; } else { values.push(prevValue[1]); } if (zIndex !== -1) { var zValue = curves.z.values[zIndex]; values.push(zValue); prevValue[2] = zValue; } else { values.push(prevValue[2]); } }); return values; } // For all animated objects, times are defined separately for each axis // Here we'll combine the times into one sorted array without duplicates function getTimesForAllAxes(curves) { var times = []; // first join together the times for each axis, if defined if (curves.x !== undefined) times = times.concat(curves.x.times); if (curves.y !== undefined) times = times.concat(curves.y.times); if (curves.z !== undefined) times = times.concat(curves.z.times); // then sort them and remove duplicates times = times.sort(function (a, b) { return a - b; }).filter(function (elem, index, array) { return array.indexOf(elem) == index; }); return times; } // parse an FBX file in ASCII format function TextParser() {} Object.assign(TextParser.prototype, { getPrevNode: function getPrevNode() { return this.nodeStack[this.currentIndent - 2]; }, getCurrentNode: function getCurrentNode() { return this.nodeStack[this.currentIndent - 1]; }, getCurrentProp: function getCurrentProp() { return this.currentProp; }, pushStack: function pushStack(node) { this.nodeStack.push(node); this.currentIndent += 1; }, popStack: function popStack() { this.nodeStack.pop(); this.currentIndent -= 1; }, setCurrentProp: function setCurrentProp(val, name) { this.currentProp = val; this.currentPropName = name; }, parse: function parse(text) { this.currentIndent = 0; this.allNodes = new FBXTree(); this.nodeStack = []; this.currentProp = []; this.currentPropName = ''; var self = this; var split = text.split('\n'); split.forEach(function (line, i) { var matchComment = line.match(/^[\s\t]*;/); var matchEmpty = line.match(/^[\s\t]*$/); if (matchComment || matchEmpty) return; var matchBeginning = line.match('^\\t{' + self.currentIndent + '}(\\w+):(.*){', ''); var matchProperty = line.match('^\\t{' + self.currentIndent + '}(\\w+):[\\s\\t\\r\\n](.*)'); var matchEnd = line.match('^\\t{' + (self.currentIndent - 1) + '}}'); if (matchBeginning) { self.parseNodeBegin(line, matchBeginning); } else if (matchProperty) { self.parseNodeProperty(line, matchProperty, split[++i]); } else if (matchEnd) { self.popStack(); } else if (line.match(/^[^\s\t}]/)) { // large arrays are split over multiple lines terminated with a ',' character // if this is encountered the line needs to be joined to the previous line self.parseNodePropertyContinued(line); } }); return this.allNodes; }, parseNodeBegin: function parseNodeBegin(line, property) { var nodeName = property[1].trim().replace(/^"/, '').replace(/"$/, ''); var nodeAttrs = property[2].split(',').map(function (attr) { return attr.trim().replace(/^"/, '').replace(/"$/, ''); }); var node = { name: nodeName }; var attrs = this.parseNodeAttr(nodeAttrs); var currentNode = this.getCurrentNode(); // a top node if (this.currentIndent === 0) { this.allNodes.add(nodeName, node); } else { // a subnode // if the subnode already exists, append it if (nodeName in currentNode) { // special case Pose needs PoseNodes as an array if (nodeName === 'PoseNode') { currentNode.PoseNode.push(node); } else if (currentNode[nodeName].id !== undefined) { currentNode[nodeName] = {}; currentNode[nodeName][currentNode[nodeName].id] = currentNode[nodeName]; } if (attrs.id !== '') currentNode[nodeName][attrs.id] = node; } else if (typeof attrs.id === 'number') { currentNode[nodeName] = {}; currentNode[nodeName][attrs.id] = node; } else if (nodeName !== 'Properties70') { if (nodeName === 'PoseNode') currentNode[nodeName] = [node];else currentNode[nodeName] = node; } } if (typeof attrs.id === 'number') node.id = attrs.id; if (attrs.name !== '') node.attrName = attrs.name; if (attrs.type !== '') node.attrType = attrs.type; this.pushStack(node); }, parseNodeAttr: function parseNodeAttr(attrs) { var id = attrs[0]; if (attrs[0] !== '') { id = parseInt(attrs[0]); if (isNaN(id)) { id = attrs[0]; } } var name = '', type = ''; if (attrs.length > 1) { name = attrs[1].replace(/^(\w+)::/, ''); type = attrs[2]; } return { id: id, name: name, type: type }; }, parseNodeProperty: function parseNodeProperty(line, property, contentLine) { var propName = property[1].replace(/^"/, '').replace(/"$/, '').trim(); var propValue = property[2].replace(/^"/, '').replace(/"$/, '').trim(); // for special case: base64 image data follows "Content: ," line // Content: , // "/9j/4RDaRXhpZgAATU0A..." if (propName === 'Content' && propValue === ',') { propValue = contentLine.replace(/"/g, '').replace(/,$/, '').trim(); } var currentNode = this.getCurrentNode(); var parentName = currentNode.name; if (parentName === 'Properties70') { this.parseNodeSpecialProperty(line, propName, propValue); return; } // Connections if (propName === 'C') { var connProps = propValue.split(',').slice(1); var from = parseInt(connProps[0]); var to = parseInt(connProps[1]); var rest = propValue.split(',').slice(3); rest = rest.map(function (elem) { return elem.trim().replace(/^"/, ''); }); propName = 'connections'; propValue = [from, to]; append(propValue, rest); if (currentNode[propName] === undefined) { currentNode[propName] = []; } } // Node if (propName === 'Node') currentNode.id = propValue; // connections if (propName in currentNode && Array.isArray(currentNode[propName])) { currentNode[propName].push(propValue); } else { if (propName !== 'a') currentNode[propName] = propValue;else currentNode.a = propValue; } this.setCurrentProp(currentNode, propName); // convert string to array, unless it ends in ',' in which case more will be added to it if (propName === 'a' && propValue.slice(-1) !== ',') { currentNode.a = parseNumberArray(propValue); } }, parseNodePropertyContinued: function parseNodePropertyContinued(line) { var currentNode = this.getCurrentNode(); currentNode.a += line; // if the line doesn't end in ',' we have reached the end of the property value // so convert the string to an array if (line.slice(-1) !== ',') { currentNode.a = parseNumberArray(currentNode.a); } }, // parse "Property70" parseNodeSpecialProperty: function parseNodeSpecialProperty(line, propName, propValue) { // split this // P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1 // into array like below // ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ] var props = propValue.split('",').map(function (prop) { return prop.trim().replace(/^\"/, '').replace(/\s/, '_'); }); var innerPropName = props[0]; var innerPropType1 = props[1]; var innerPropType2 = props[2]; var innerPropFlag = props[3]; var innerPropValue = props[4]; // cast values where needed, otherwise leave as strings switch (innerPropType1) { case 'int': case 'enum': case 'bool': case 'ULongLong': case 'double': case 'Number': case 'FieldOfView': innerPropValue = parseFloat(innerPropValue); break; case 'Color': case 'ColorRGB': case 'Vector3D': case 'Lcl_Translation': case 'Lcl_Rotation': case 'Lcl_Scaling': innerPropValue = parseNumberArray(innerPropValue); break; } // CAUTION: these props must append to parent's parent this.getPrevNode()[innerPropName] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; this.setCurrentProp(this.getPrevNode(), innerPropName); } }); // Parse an FBX file in Binary format function BinaryParser() {} Object.assign(BinaryParser.prototype, { parse: function parse(buffer) { var reader = new BinaryReader(buffer); reader.skip(23); // skip magic 23 bytes var version = reader.getUint32(); console.log('THREE.FBXLoader: FBX binary version: ' + version); var allNodes = new FBXTree(); while (!this.endOfContent(reader)) { var node = this.parseNode(reader, version); if (node !== null) allNodes.add(node.name, node); } return allNodes; }, // Check if reader has reached the end of content. endOfContent: function endOfContent(reader) { // footer size: 160bytes + 16-byte alignment padding // - 16bytes: magic // - padding til 16-byte alignment (at least 1byte?) // (seems like some exporters embed fixed 15 or 16bytes?) // - 4bytes: magic // - 4bytes: version // - 120bytes: zero // - 16bytes: magic if (reader.size() % 16 === 0) { return (reader.getOffset() + 160 + 16 & ~0xf) >= reader.size(); } else { return reader.getOffset() + 160 + 16 >= reader.size(); } }, // recursively parse nodes until the end of the file is reached parseNode: function parseNode(reader, version) { var node = {}; // The first three data sizes depends on version. var endOffset = version >= 7500 ? reader.getUint64() : reader.getUint32(); var numProperties = version >= 7500 ? reader.getUint64() : reader.getUint32(); // note: do not remove this even if you get a linter warning as it moves the buffer forward var propertyListLen = version >= 7500 ? reader.getUint64() : reader.getUint32(); var nameLen = reader.getUint8(); var name = reader.getString(nameLen); // Regards this node as NULL-record if endOffset is zero if (endOffset === 0) return null; var propertyList = []; for (var i = 0; i < numProperties; i++) { propertyList.push(this.parseProperty(reader)); } // Regards the first three elements in propertyList as id, attrName, and attrType var id = propertyList.length > 0 ? propertyList[0] : ''; var attrName = propertyList.length > 1 ? propertyList[1] : ''; var attrType = propertyList.length > 2 ? propertyList[2] : ''; // check if this node represents just a single property // like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]} node.singleProperty = numProperties === 1 && reader.getOffset() === endOffset ? true : false; while (endOffset > reader.getOffset()) { var subNode = this.parseNode(reader, version); if (subNode !== null) this.parseSubNode(name, node, subNode); } node.propertyList = propertyList; // raw property list used by parent if (typeof id === 'number') node.id = id; if (attrName !== '') node.attrName = attrName; if (attrType !== '') node.attrType = attrType; if (name !== '') node.name = name; return node; }, parseSubNode: function parseSubNode(name, node, subNode) { // special case: child node is single property if (subNode.singleProperty === true) { var value = subNode.propertyList[0]; if (Array.isArray(value)) { node[subNode.name] = subNode; subNode.a = value; } else { node[subNode.name] = value; } } else if (name === 'Connections' && subNode.name === 'C') { var array = []; subNode.propertyList.forEach(function (property, i) { // first Connection is FBX type (OO, OP, etc.). We'll discard these if (i !== 0) array.push(property); }); if (node.connections === undefined) { node.connections = []; } node.connections.push(array); } else if (subNode.name === 'Properties70') { var keys = Object.keys(subNode); keys.forEach(function (key) { node[key] = subNode[key]; }); } else if (name === 'Properties70' && subNode.name === 'P') { var innerPropName = subNode.propertyList[0]; var innerPropType1 = subNode.propertyList[1]; var innerPropType2 = subNode.propertyList[2]; var innerPropFlag = subNode.propertyList[3]; var innerPropValue; if (innerPropName.indexOf('Lcl ') === 0) innerPropName = innerPropName.replace('Lcl ', 'Lcl_'); if (innerPropType1.indexOf('Lcl ') === 0) innerPropType1 = innerPropType1.replace('Lcl ', 'Lcl_'); if (innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf('Lcl_') === 0) { innerPropValue = [subNode.propertyList[4], subNode.propertyList[5], subNode.propertyList[6]]; } else { innerPropValue = subNode.propertyList[4]; } // this will be copied to parent, see above node[innerPropName] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; } else if (node[subNode.name] === undefined) { if (typeof subNode.id === 'number') { node[subNode.name] = {}; node[subNode.name][subNode.id] = subNode; } else { node[subNode.name] = subNode; } } else { if (subNode.name === 'PoseNode') { if (!Array.isArray(node[subNode.name])) { node[subNode.name] = [node[subNode.name]]; } node[subNode.name].push(subNode); } else if (node[subNode.name][subNode.id] === undefined) { node[subNode.name][subNode.id] = subNode; } } }, parseProperty: function parseProperty(reader) { var type = reader.getString(1); switch (type) { case 'C': return reader.getBoolean(); case 'D': return reader.getFloat64(); case 'F': return reader.getFloat32(); case 'I': return reader.getInt32(); case 'L': return reader.getInt64(); case 'R': var length = reader.getUint32(); return reader.getArrayBuffer(length); case 'S': var length = reader.getUint32(); return reader.getString(length); case 'Y': return reader.getInt16(); case 'b': case 'c': case 'd': case 'f': case 'i': case 'l': var arrayLength = reader.getUint32(); var encoding = reader.getUint32(); // 0: non-compressed, 1: compressed var compressedLength = reader.getUint32(); if (encoding === 0) { switch (type) { case 'b': case 'c': return reader.getBooleanArray(arrayLength); case 'd': return reader.getFloat64Array(arrayLength); case 'f': return reader.getFloat32Array(arrayLength); case 'i': return reader.getInt32Array(arrayLength); case 'l': return reader.getInt64Array(arrayLength); } } if (window.Zlib === undefined) { console.error('THREE.FBXLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js'); } var inflate = new Zlib.Inflate(new Uint8Array(reader.getArrayBuffer(compressedLength))); // eslint-disable-line no-undef var reader2 = new BinaryReader(inflate.decompress().buffer); switch (type) { case 'b': case 'c': return reader2.getBooleanArray(arrayLength); case 'd': return reader2.getFloat64Array(arrayLength); case 'f': return reader2.getFloat32Array(arrayLength); case 'i': return reader2.getInt32Array(arrayLength); case 'l': return reader2.getInt64Array(arrayLength); } default: throw new Error('THREE.FBXLoader: Unknown property type ' + type); } } }); function BinaryReader(buffer, littleEndian) { this.dv = new DataView(buffer); this.offset = 0; this.littleEndian = littleEndian !== undefined ? littleEndian : true; } Object.assign(BinaryReader.prototype, { getOffset: function getOffset() { return this.offset; }, size: function size() { return this.dv.buffer.byteLength; }, skip: function skip(length) { this.offset += length; }, // seems like true/false representation depends on exporter. // true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) // then sees LSB. getBoolean: function getBoolean() { return (this.getUint8() & 1) === 1; }, getBooleanArray: function getBooleanArray(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getBoolean()); } return a; }, getUint8: function getUint8() { var value = this.dv.getUint8(this.offset); this.offset += 1; return value; }, getInt16: function getInt16() { var value = this.dv.getInt16(this.offset, this.littleEndian); this.offset += 2; return value; }, getInt32: function getInt32() { var value = this.dv.getInt32(this.offset, this.littleEndian); this.offset += 4; return value; }, getInt32Array: function getInt32Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getInt32()); } return a; }, getUint32: function getUint32() { var value = this.dv.getUint32(this.offset, this.littleEndian); this.offset += 4; return value; }, // JavaScript doesn't support 64-bit integer so calculate this here // 1 << 32 will return 1 so using multiply operation instead here. // There's a possibility that this method returns wrong value if the value // is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. // TODO: safely handle 64-bit integer getInt64: function getInt64() { var low, high; if (this.littleEndian) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } // calculate negative value if (high & 0x80000000) { high = ~high & 0xFFFFFFFF; low = ~low & 0xFFFFFFFF; if (low === 0xFFFFFFFF) high = high + 1 & 0xFFFFFFFF; low = low + 1 & 0xFFFFFFFF; return -(high * 0x100000000 + low); } return high * 0x100000000 + low; }, getInt64Array: function getInt64Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getInt64()); } return a; }, // Note: see getInt64() comment getUint64: function getUint64() { var low, high; if (this.littleEndian) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } return high * 0x100000000 + low; }, getFloat32: function getFloat32() { var value = this.dv.getFloat32(this.offset, this.littleEndian); this.offset += 4; return value; }, getFloat32Array: function getFloat32Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getFloat32()); } return a; }, getFloat64: function getFloat64() { var value = this.dv.getFloat64(this.offset, this.littleEndian); this.offset += 8; return value; }, getFloat64Array: function getFloat64Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getFloat64()); } return a; }, getArrayBuffer: function getArrayBuffer(size) { var value = this.dv.buffer.slice(this.offset, this.offset + size); this.offset += size; return value; }, getString: function getString(size) { var a = new Uint8Array(size); for (var i = 0; i < size; i++) { a[i] = this.getUint8(); } var nullByte = a.indexOf(0); if (nullByte >= 0) a = a.slice(0, nullByte); return THREE.LoaderUtils.decodeText(a); } }); // FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format) // and BinaryParser( FBX Binary format) function FBXTree() {} Object.assign(FBXTree.prototype, { add: function add(key, val) { this[key] = val; } }); function isFbxFormatBinary(buffer) { var CORRECT = 'Kaydara FBX Binary \0'; return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString(buffer, 0, CORRECT.length); } function isFbxFormatASCII(text) { var CORRECT = ['K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\']; var cursor = 0; function read(offset) { var result = text[offset - 1]; text = text.slice(cursor + offset); cursor++; return result; } for (var i = 0; i < CORRECT.length; ++i) { var num = read(1); if (num === CORRECT[i]) { return false; } } return true; } function getFbxVersion(text) { var versionRegExp = /FBXVersion: (\d+)/; var match = text.match(versionRegExp); if (match) { var version = parseInt(match[1]); return version; } throw new Error('THREE.FBXLoader: Cannot find the version number for the file given.'); } // Converts FBX ticks into real time seconds. function convertFBXTimeToSeconds(time) { return time / 46186158000; } // Parses comma separated list of numbers and returns them an array. // Used internally by the TextParser function parseNumberArray(value) { var array = value.split(',').map(function (val) { return parseFloat(val); }); return array; } function convertArrayBufferToString(buffer, from, to) { if (from === undefined) from = 0; if (to === undefined) to = buffer.byteLength; return THREE.LoaderUtils.decodeText(new Uint8Array(buffer, from, to)); } function append(a, b) { for (var i = 0, j = a.length, l = b.length; i < l; i++, j++) { a[j] = b[i]; } } function slice(a, b, from, to) { for (var i = from, j = 0; i < to; i++, j++) { a[j] = b[i]; } return a; } })(); },{}],3:[function(require,module,exports){ 'use strict'; /** * @author Wei Meng / http://about.me/menway * * Description: A THREE loader for PLY ASCII files (known as the Polygon File Format or the Stanford Triangle Format). * * * Limitations: ASCII decoding assumes file is UTF-8. * * Usage: * var loader = new THREE.PLYLoader(); * loader.load('./models/ply/ascii/dolphins.ply', function (geometry) { * * scene.add( new THREE.Mesh( geometry ) ); * * } ); * * If the PLY file uses non standard property names, they can be mapped while * loading. For example, the following maps the properties * “diffuse_(red|green|blue)” in the file to standard color names. * * loader.setPropertyNameMapping( { * diffuse_red: 'red', * diffuse_green: 'green', * diffuse_blue: 'blue' * } ); * */ module.exports = THREE.PLYLoader = function (manager) { this.manager = manager !== undefined ? manager : THREE.DefaultLoadingManager; this.propertyNameMapping = {}; }; THREE.PLYLoader.prototype = { constructor: THREE.PLYLoader, load: function load(url, onLoad, onProgress, onError) { var scope = this; var loader = new THREE.XHRLoader(this.manager); loader.setResponseType('arraybuffer'); loader.load(url, function (text) { onLoad(scope.parse(text)); }, onProgress, onError); }, setPropertyNameMapping: function setPropertyNameMapping(mapping) { this.propertyNameMapping = mapping; }, bin2str: function bin2str(buf) { var array_buffer = new Uint8Array(buf); var str = ''; for (var i = 0; i < buf.byteLength; i++) { str += String.fromCharCode(array_buffer[i]); // implicitly assumes little-endian } return str; }, isASCII: function isASCII(data) { var header = this.parseHeader(this.bin2str(data)); return header.format === "ascii"; }, parse: function parse(data) { if (data instanceof ArrayBuffer) { return this.isASCII(data) ? this.parseASCII(this.bin2str(data)) : this.parseBinary(data); } else { return this.parseASCII(data); } }, parseHeader: function parseHeader(data) { var patternHeader = /ply([\s\S]*)end_header\s/; var headerText = ""; var headerLength = 0; var result = patternHeader.exec(data); if (result !== null) { headerText = result[1]; headerLength = result[0].length; } var header = { comments: [], elements: [], headerLength: headerLength }; var lines = headerText.split('\n'); var currentElement = undefined; var lineType, lineValues; function make_ply_element_property(propertValues, propertyNameMapping) { var property = { type: propertValues[0] }; if (property.type === 'list') { property.name = propertValues[3]; property.countType = propertValues[1]; property.itemType = propertValues[2]; } else { property.name = propertValues[1]; } if (property.name in propertyNameMapping) { property.name = propertyNameMapping[property.name]; } return property; } for (var i = 0; i < lines.length; i++) { var line = lines[i]; line = line.trim(); if (line === "") { continue; } lineValues = line.split(/\s+/); lineType = lineValues.shift(); line = lineValues.join(" "); switch (lineType) { case "format": header.format = lineValues[0]; header.version = lineValues[1]; break; case "comment": header.comments.push(line); break; case "element": if (!(currentElement === undefined)) { header.elements.push(currentElement); } currentElement = Object(); currentElement.name = lineValues[0]; currentElement.count = parseInt(lineValues[1]); currentElement.properties = []; break; case "property": currentElement.properties.push(make_ply_element_property(lineValues, this.propertyNameMapping)); break; default: console.log("unhandled", lineType, lineValues); } } if (!(currentElement === undefined)) { header.elements.push(currentElement); } return header; }, parseASCIINumber: function parseASCIINumber(n, type) { switch (type) { case 'char':case 'uchar':case 'short':case 'ushort':case 'int':case 'uint': case 'int8':case 'uint8':case 'int16':case 'uint16':case 'int32':case 'uint32': return parseInt(n); case 'float':case 'double':case 'float32':case 'float64': return parseFloat(n); } }, parseASCIIElement: function parseASCIIElement(properties, line) { var values = line.split(/\s+/); var element = Object(); for (var i = 0; i < properties.length; i++) { if (properties[i].type === "list") { var list = []; var n = this.parseASCIINumber(values.shift(), properties[i].countType); for (var j = 0; j < n; j++) { list.push(this.parseASCIINumber(values.shift(), properties[i].itemType)); } element[properties[i].name] = list; } else { element[properties[i].name] = this.parseASCIINumber(values.shift(), properties[i].type); } } return element; }, parseASCII: function parseASCII(data) { // PLY ascii format specification, as per http://en.wikipedia.org/wiki/PLY_(file_format) var geometry = new THREE.Geometry(); var result; var header = this.parseHeader(data); var patternBody = /end_header\s([\s\S]*)$/; var body = ""; if ((result = patternBody.exec(data)) !== null) { body = result[1]; } var lines = body.split('\n'); var currentElement = 0; var currentElementCount = 0; geometry.useColor = false; for (var i = 0; i < lines.length; i++) { var line = lines[i]; line = line.trim(); if (line === "") { continue; } if (currentElementCount >= header.elements[currentElement].count) { currentElement++; currentElementCount = 0; } var element = this.parseASCIIElement(header.elements[currentElement].properties, line); this.handleElement(geometry, header.elements[currentElement].name, element); currentElementCount++; } return this.postProcess(geometry); }, postProcess: function postProcess(geometry) { if (geometry.useColor) { for (var i = 0; i < geometry.faces.length; i++) { geometry.faces[i].vertexColors = [geometry.colors[geometry.faces[i].a], geometry.colors[geometry.faces[i].b], geometry.colors[geometry.faces[i].c]]; } geometry.elementsNeedUpdate = true; } geometry.computeBoundingSphere(); return geometry; }, handleElement: function handleElement(geometry, elementName, element) { if (elementName === "vertex") { geometry.vertices.push(new THREE.Vector3(element.x, element.y, element.z)); if ('red' in element && 'green' in element && 'blue' in element) { geometry.useColor = true; var color = new THREE.Color(); color.setRGB(element.red / 255.0, element.green / 255.0, element.blue / 255.0); geometry.colors.push(color); } } else if (elementName === "face") { // BEGIN: Edits by donmccurdy. var vertex_indices = element.vertex_indices || element.vertex_index; // END: Edits by donmccurdy. if (vertex_indices.length === 3) { geometry.faces.push(new THREE.Face3(vertex_indices[0], vertex_indices[1], vertex_indices[2])); } else if (vertex_indices.length === 4) { geometry.faces.push(new THREE.Face3(vertex_indices[0], vertex_indices[1], vertex_indices[3]), new THREE.Face3(vertex_indices[1], vertex_indices[2], vertex_indices[3])); } } }, binaryRead: function binaryRead(dataview, at, type, little_endian) { switch (type) { // corespondences for non-specific length types here match rply: case 'int8':case 'char': return [dataview.getInt8(at), 1]; case 'uint8':case 'uchar': return [dataview.getUint8(at), 1]; case 'int16':case 'short': return [dataview.getInt16(at, little_endian), 2]; case 'uint16':case 'ushort': return [dataview.getUint16(at, little_endian), 2]; case 'int32':case 'int': return [dataview.getInt32(at, little_endian), 4]; case 'uint32':case 'uint': return [dataview.getUint32(at, little_endian), 4]; case 'float32':case 'float': return [dataview.getFloat32(at, little_endian), 4]; case 'float64':case 'double': return [dataview.getFloat64(at, little_endian), 8]; } }, binaryReadElement: function binaryReadElement(dataview, at, properties, little_endian) { var element = Object(); var result, read = 0; for (var i = 0; i < properties.length; i++) { if (properties[i].type === "list") { var list = []; result = this.binaryRead(dataview, at + read, properties[i].countType, little_endian); var n = result[0]; read += result[1]; for (var j = 0; j < n; j++) { result = this.binaryRead(dataview, at + read, properties[i].itemType, little_endian); list.push(result[0]); read += result[1]; } element[properties[i].name] = list; } else { result = this.binaryRead(dataview, at + read, properties[i].type, little_endian); element[properties[i].name] = result[0]; read += result[1]; } } return [element, read]; }, parseBinary: function parseBinary(data) { var geometry = new THREE.Geometry(); var header = this.parseHeader(this.bin2str(data)); var little_endian = header.format === "binary_little_endian"; var body = new DataView(data, header.headerLength); var result, loc = 0; for (var currentElement = 0; currentElement < header.elements.length; currentElement++) { for (var currentElementCount = 0; currentElementCount < header.elements[currentElement].count; currentElementCount++) { result = this.binaryReadElement(body, loc, header.elements[currentElement].properties, little_endian); loc += result[1]; var element = result[0]; this.handleElement(geometry, header.elements[currentElement].name, element); } } return this.postProcess(geometry); } }; },{}],4:[function(require,module,exports){ 'use strict'; /** * Source: https://github.com/Adobe-Marketing-Cloud/fetch-script */ function getScriptId() { return 'script_' + Date.now() + '_' + Math.ceil(Math.random() * 100000); } function createScript(url, id) { var script = document.createElement('script'); script.type = 'text/javascript'; script.async = true; script.id = id; script.src = url; return script; } function removeScript(id) { var script = document.getElementById(id); var parent = script.parentNode; try { parent && parent.removeChild(script); } catch (e) { // ignore } } function appendScript(script) { var firstScript = document.getElementsByTagName('script')[0]; firstScript.parentNode.insertBefore(script, firstScript); } function fetchScriptInternal(url, options, Promise) { return new Promise(function (resolve, reject) { var timeout = options.timeout || 5000; var scriptId = getScriptId(); var script = createScript(url, scriptId); var timeoutId = setTimeout(function () { reject(new Error('Script request to ' + url + ' timed out')); removeScript(scriptId); }, timeout); var disableTimeout = function disableTimeout(timeoutId) { clearTimeout(timeoutId); }; script.addEventListener('load', function (e) { resolve({ ok: true }); disableTimeout(timeoutId); removeScript(scriptId); }); script.addEventListener('error', function (e) { reject(new Error('Script request to ' + url + ' failed ' + e)); disableTimeout(timeoutId); removeScript(scriptId); }); appendScript(script); }); } function fetchScript(settings) { settings = settings || {}; return function (url, options) { options = options || {}; return fetchScriptInternal(url, options, settings.Promise || Promise); }; } module.exports = fetchScript; },{}],5:[function(require,module,exports){ 'use strict'; var LoopMode = { once: THREE.LoopOnce, repeat: THREE.LoopRepeat, pingpong: THREE.LoopPingPong }; /** * animation-mixer * * Player for animation clips. Intended to be compatible with any model format that supports * skeletal or morph animations through THREE.AnimationMixer. * See: https://threejs.org/docs/?q=animation#Reference/Animation/AnimationMixer */ module.exports = AFRAME.registerComponent('animation-mixer', { schema: { clip: { default: '*' }, duration: { default: 0 }, crossFadeDuration: { default: 0 }, loop: { default: 'repeat', oneOf: Object.keys(LoopMode) }, repetitions: { default: Infinity, min: 0 } }, init: function init() { var _this = this; /** @type {THREE.Mesh} */ this.model = null; /** @type {THREE.AnimationMixer} */ this.mixer = null; /** @type {Array} */ this.activeActions = []; var model = this.el.getObject3D('mesh'); if (model) { this.load(model); } else { this.el.addEventListener('model-loaded', function (e) { _this.load(e.detail.model); }); } }, load: function load(model) { var el = this.el; this.model = model; this.mixer = new THREE.AnimationMixer(model); this.mixer.addEventListener('loop', function (e) { el.emit('animation-loop', { action: e.action, loopDelta: e.loopDelta }); }); this.mixer.addEventListener('finished', function (e) { el.emit('animation-finished', { action: e.action, direction: e.direction }); }); if (this.data.clip) this.update({}); }, remove: function remove() { if (this.mixer) this.mixer.stopAllAction(); }, update: function update(previousData) { if (!previousData) return; this.stopAction(); if (this.data.clip) { this.playAction(); } }, stopAction: function stopAction() { var data = this.data; for (var i = 0; i < this.activeActions.length; i++) { data.crossFadeDuration ? this.activeActions[i].fadeOut(data.crossFadeDuration) : this.activeActions[i].stop(); } this.activeActions.length = 0; }, playAction: function playAction() { if (!this.mixer) return; var model = this.model, data = this.data, clips = model.animations || (model.geometry || {}).animations || []; if (!clips.length) return; var re = wildcardToRegExp(data.clip); for (var clip, i = 0; clip = clips[i]; i++) { if (clip.name.match(re)) { var action = this.mixer.clipAction(clip, model); action.enabled = true; if (data.duration) action.setDuration(data.duration); action.setLoop(LoopMode[data.loop], data.repetitions).fadeIn(data.crossFadeDuration).play(); this.activeActions.push(action); } } }, tick: function tick(t, dt) { if (this.mixer && !isNaN(dt)) this.mixer.update(dt / 1000); } }); /** * Creates a RegExp from the given string, converting asterisks to .* expressions, * and escaping all other characters. */ function wildcardToRegExp(s) { return new RegExp('^' + s.split(/\*+/).map(regExpEscape).join('.*') + '$'); } /** * RegExp-escapes all characters in the given string. */ function regExpEscape(s) { return s.replace(/[|\\{}()[\]^$+*?.]/g, '\\$&'); } },{}],6:[function(require,module,exports){ 'use strict'; THREE.FBXLoader = require('../../lib/FBXLoader'); /** * fbx-model * * Loader for FBX format. Supports ASCII, but *not* binary, models. */ module.exports = AFRAME.registerComponent('fbx-model', { schema: { src: { type: 'asset' }, crossorigin: { default: '' } }, init: function init() { this.model = null; }, update: function update() { var data = this.data; if (!data.src) return; this.remove(); var loader = new THREE.FBXLoader(); if (data.crossorigin) loader.setCrossOrigin(data.crossorigin); loader.load(data.src, this.load.bind(this)); }, load: function load(model) { this.model = model; this.el.setObject3D('mesh', model); this.el.emit('model-loaded', { format: 'fbx', model: model }); }, remove: function remove() { if (this.model) this.el.removeObject3D('mesh'); } }); },{"../../lib/FBXLoader":2}],7:[function(require,module,exports){ 'use strict'; var fetchScript = require('../../lib/fetch-script')(); var LOADER_SRC = 'https://rawgit.com/mrdoob/three.js/r86/examples/js/loaders/GLTFLoader.js'; var loadLoader = function () { var promise = void 0; return function () { promise = promise || fetchScript(LOADER_SRC); return promise; }; }(); /** * Legacy loader for glTF 1.0 models. * Asynchronously loads THREE.GLTFLoader from rawgit. */ module.exports = AFRAME.registerComponent('gltf-model-legacy', { schema: { type: 'model' }, init: function init() { var _this = this; this.model = null; this.loader = null; this.loaderPromise = loadLoader().then(function () { _this.loader = new THREE.GLTFLoader(); _this.loader.setCrossOrigin('Anonymous'); }); }, update: function update() { var _this2 = this; var self = this; var el = this.el; var src = this.data; if (!src) { return; } this.remove(); this.loaderPromise.then(function () { _this2.loader.load(src, function gltfLoaded(gltfModel) { self.model = gltfModel.scene; self.model.animations = gltfModel.animations; el.setObject3D('mesh', self.model); el.emit('model-loaded', { format: 'gltf', model: self.model }); }); }); }, remove: function remove() { if (!this.model) { return; } this.el.removeObject3D('mesh'); } }); },{"../../lib/fetch-script":4}],8:[function(require,module,exports){ 'use strict'; require('./animation-mixer'); require('./fbx-model'); require('./gltf-model-legacy'); require('./json-model'); require('./object-model'); require('./ply-model'); },{"./animation-mixer":5,"./fbx-model":6,"./gltf-model-legacy":7,"./json-model":9,"./object-model":10,"./ply-model":11}],9:[function(require,module,exports){ 'use strict'; /** * json-model * * Loader for THREE.js JSON format. Somewhat confusingly, there are two different THREE.js formats, * both having the .json extension. This loader supports only THREE.JsonLoader, which typically * includes only a single mesh. * * Check the console for errors, if in doubt. You may need to use `object-model` or * `blend-character-model` for some .js and .json files. * * See: https://clara.io/learn/user-guide/data_exchange/threejs_export */ module.exports = AFRAME.registerComponent('json-model', { schema: { src: { type: 'asset' }, crossorigin: { default: '' } }, init: function init() { this.model = null; }, update: function update() { var _this = this; var loader = void 0; var data = this.data; if (!data.src) return; this.remove(); loader = new THREE.JSONLoader(); if (data.crossorigin) loader.crossOrigin = data.crossorigin; loader.load(data.src, function (geometry, materials) { // Attempt to automatically detect common material options. materials.forEach(function (mat) { mat.vertexColors = (geometry.faces[0] || {}).color ? THREE.FaceColors : THREE.NoColors; mat.skinning = !!(geometry.bones || []).length; mat.morphTargets = !!(geometry.morphTargets || []).length; mat.morphNormals = !!(geometry.morphNormals || []).length; }); var model = (geometry.bones || []).length ? new THREE.SkinnedMesh(geometry, new THREE.MultiMaterial(materials)) : new THREE.Mesh(geometry, new THREE.MultiMaterial(materials)); _this.load(model); }); }, load: function load(model) { this.model = model; this.el.setObject3D('mesh', model); this.el.emit('model-loaded', { format: 'json', model: model }); }, remove: function remove() { if (this.model) this.el.removeObject3D('mesh'); } }); },{}],10:[function(require,module,exports){ 'use strict'; /** * object-model * * Loader for THREE.js JSON format. Somewhat confusingly, there are two different THREE.js formats, * both having the .json extension. This loader supports only THREE.ObjectLoader, which typically * includes multiple meshes or an entire scene. * * Check the console for errors, if in doubt. You may need to use `json-model` or * `blend-character-model` for some .js and .json files. * * See: https://clara.io/learn/user-guide/data_exchange/threejs_export */ module.exports = AFRAME.registerComponent('object-model', { schema: { src: { type: 'asset' }, crossorigin: { default: '' } }, init: function init() { this.model = null; }, update: function update() { var _this = this; var loader = void 0; var data = this.data; if (!data.src) return; this.remove(); loader = new THREE.ObjectLoader(); if (data.crossorigin) loader.setCrossOrigin(data.crossorigin); loader.load(data.src, function (object) { // Enable skinning, if applicable. object.traverse(function (o) { if (o instanceof THREE.SkinnedMesh && o.material) { o.material.skinning = !!(o.geometry && o.geometry.bones || []).length; } }); _this.load(object); }); }, load: function load(model) { this.model = model; this.el.setObject3D('mesh', model); this.el.emit('model-loaded', { format: 'json', model: model }); }, remove: function remove() { if (this.model) this.el.removeObject3D('mesh'); } }); },{}],11:[function(require,module,exports){ 'use strict'; /** * ply-model * * Wraps THREE.PLYLoader. */ THREE.PLYLoader = require('../../lib/PLYLoader'); /** * Loads, caches, resolves geometries. * * @member cache - Promises that resolve geometries keyed by `src`. */ module.exports.System = AFRAME.registerSystem('ply-model', { init: function init() { this.cache = {}; }, /** * @returns {Promise} */ getOrLoadGeometry: function getOrLoadGeometry(src, skipCache) { var cache = this.cache; var cacheItem = cache[src]; if (!skipCache && cacheItem) { return cacheItem; } cache[src] = new Promise(function (resolve) { var loader = new THREE.PLYLoader(); loader.load(src, function (geometry) { resolve(geometry); }); }); return cache[src]; } }); module.exports.Component = AFRAME.registerComponent('ply-model', { schema: { skipCache: { type: 'boolean', default: false }, src: { type: 'asset' } }, init: function init() { this.model = null; }, update: function update() { var data = this.data; var el = this.el; if (!data.src) { console.warn('[%s] `src` property is required.', this.name); return; } // Get geometry from system, create and set mesh. this.system.getOrLoadGeometry(data.src, data.skipCache).then(function (geometry) { var model = createModel(geometry); el.setObject3D('mesh', model); el.emit('model-loaded', { format: 'ply', model: model }); }); }, remove: function remove() { if (this.model) { this.el.removeObject3D('mesh'); } } }); function createModel(geometry) { return new THREE.Mesh(geometry, new THREE.MeshPhongMaterial({ color: 0xFFFFFF, shading: THREE.FlatShading, vertexColors: THREE.VertexColors, shininess: 0 })); } },{"../../lib/PLYLoader":3}]},{},[1]);